Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stress Chaperones ; 28(6): 621-629, 2023 11.
Article in English | MEDLINE | ID: mdl-37462824

ABSTRACT

The Fourth Cell Stress Society International workshop on small heat shock proteins (sHSPs), a follow-up to successful workshops held in 2014, 2016 and 2018, took place as a virtual meeting on the 17-18 November 2022. The meeting was designed to provide an opportunity for those working on sHSPs to reconnect and discuss their latest work. The diversity of research in the sHSP field is reflected in the breadth of topics covered in the talks presented at this meeting. Here we summarise the presentations at this meeting and provide some perspectives on exciting future topics to be addressed in the field.


Subject(s)
Heat-Shock Proteins, Small , Heat-Shock Proteins, Small/metabolism , Proteins
2.
Nat Ecol Evol ; 7(5): 756-767, 2023 05.
Article in English | MEDLINE | ID: mdl-37012377

ABSTRACT

Highly specific interactions between proteins are a fundamental prerequisite for life, but how they evolve remains an unsolved problem. In particular, interactions between initially unrelated proteins require that they evolve matching surfaces. It is unclear whether such surface compatibilities can only be built by selection in small incremental steps, or whether they can also emerge fortuitously. Here, we used molecular phylogenetics, ancestral sequence reconstruction and biophysical characterization of resurrected proteins to retrace the evolution of an allosteric interaction between two proteins that act in the cyanobacterial photoprotection system. We show that this interaction between the orange carotenoid protein (OCP) and its unrelated regulator, the fluorescence recovery protein (FRP), evolved when a precursor of FRP was horizontally acquired by cyanobacteria. FRP's precursors could already interact with and regulate OCP even before these proteins first encountered each other in an ancestral cyanobacterium. The OCP-FRP interaction exploits an ancient dimer interface in OCP, which also predates the recruitment of FRP into the photoprotection system. Together, our work shows how evolution can fashion complex regulatory systems easily out of pre-existing components.


Subject(s)
Bacterial Proteins , Cyanobacteria , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyanobacteria/physiology , Carotenoids/metabolism
3.
Nat Commun ; 13(1): 2692, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577786

ABSTRACT

Soluble aggregates of the microtubule-associated protein tau have been challenging to assemble and characterize, despite their important role in the development of tauopathies. We found that sequential hyperphosphorylation by protein kinase A in conjugation with either glycogen synthase kinase 3ß or stress activated protein kinase 4 enabled recombinant wild-type tau of isoform 0N4R to spontaneously polymerize into small amorphous aggregates in vitro. We employed tandem mass spectrometry to determine the phosphorylation sites, high-resolution native mass spectrometry to measure the degree of phosphorylation, and super-resolution microscopy and electron microscopy to characterize the morphology of aggregates formed. Functionally, compared with the unmodified aggregates, which require heparin induction to assemble, these self-assembled hyperphosphorylated tau aggregates more efficiently disrupt membrane bilayers and induce Toll-like receptor 4-dependent responses in human macrophages. Together, our results demonstrate that hyperphosphorylated tau aggregates are potentially damaging to cells, suggesting a mechanism for how hyperphosphorylation could drive neuroinflammation in tauopathies.


Subject(s)
Tauopathies , Toll-Like Receptor 4 , tau Proteins , Glycogen Synthase Kinase 3 beta/metabolism , Heparin , Humans , Phosphorylation , Protein Aggregation, Pathological/metabolism , Protein Isoforms/metabolism , Tauopathies/metabolism , Toll-Like Receptor 4/metabolism , tau Proteins/metabolism , tau Proteins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...