Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(45): 5836-5839, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38747259

ABSTRACT

A (3+2) cycloaddition between unbiased alkenes and 1,3-dicarbonyls is accomplished by judicious choice of electrode material and electrocatalyst to access dihydrofuran derivatives. A fluorinated porous carbon electrode with appropriate thickness governs unprecedented reactivity. This methodology eliminates the necessity for any stabilizing group within the alkene substrate. This is a rare example of the annulation of unbiased internal and terminal alkenes with cyclic and acyclic ß-dicarbonyls.

2.
Chem Sci ; 14(30): 8109-8118, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37538824

ABSTRACT

The chemical up-cycling of polymers into value-added materials offers a unique opportunity to place plastic waste in a new value chain towards a circular economy. Herein, we report the selective up-cycling of polystyrenes and polyolefins to C(sp3)-H azidated materials under electrocatalytic conditions. The functionalized polymers were obtained with high retention of mass average molecular mass and high functionalization through chemo-selective mangana-electrocatalysis. Our strategy proved to be broadly applicable to a variety of homo- and copolymers. Polyethylene, polypropylene as well as post-consumer polystyrene materials were functionalized by this approach, thereby avoiding the use of hypervalent-iodine reagents in stoichiometric quantities by means of electrocatalysis. This study, hence, represents a chemical oxidant-free polymer functionalization by electro-oxidation. The electrocatalysis proved to be scalable, which highlights its unique feature for a green hydrogen economy by means of the hydrogen evolution reaction (HER).

3.
Chem Rec ; 21(9): 2430-2441, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34028175

ABSTRACT

Catalyzed C-H functionalizations have emerged as a transformative platform for molecular syntheses. Despite of indisputable advances, oxidative C-H activations have been largely restricted to precious transition metals and stoichiometric amounts of chemical oxidants. In contrast, we herein discuss the potential of earth-abundant, environmentally-benign 3d transition metals for C-H activation, which has recently gained major momentum. Thus, a strategy for full resource economy has been established in our group, with green electricity as a renewable redox agent, giving valuable hydrogen as the sole byproduct under redox mediator-free conditions. In this account, we detail our accomplishments in 3d metallaelectrocatalysis towards green syntheses until March 2021.

4.
Angew Chem Int Ed Engl ; 59(33): 14154-14159, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32324948

ABSTRACT

Direct alkylations of carboxylic acid derivatives are challenging and particularly nickel catalysis commonly requires high reaction temperatures and strong bases, translating into limited substrate scope. Herein, nickel-catalyzed C-H alkylations of unactivated 8-aminoquinoline amides have been realized under exceedingly mild conditions, namely at room temperature, with a mild base and a user-friendly electrochemical setup. This electrocatalyzed C-H alkylation displays high functional group tolerance and is applicable to both the primary and secondary alkylation. Based on detailed mechanistic studies, a nickel(II/III/I) catalytic manifold has been proposed.

5.
Chemistry ; 26(48): 10936-10947, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32329534

ABSTRACT

C-H activation has emerged as one of the most efficient tools for the formation of carbon-carbon and carbon-heteroatom bonds, avoiding the use of prefunctionalized materials. In spite of tremendous progress in the field, stoichiometric quantities of toxic and/or costly chemical redox reagents, such as silver(I) or copper(II) salts, are largely required for oxidative C-H activations. Recently, electrosynthesis has experienced a remarkable renaissance that enables the use of storable, safe and waste-free electric current as a redox equivalent. While major recent momentum was gained in electrocatalyzed C-H activations by 4d and 5d metals, user-friendly and inexpensive nickela-electrocatalysis has until recently proven elusive for oxidative C-H activations. Herein, the early developments of nickela-electrocatalyzed reductive cross-electrophile couplings as well as net-redox-neutral cross-couplings are first introduced. The focus of this Minireview is, however, the recent emergence of nickel-catalyzed electrooxidative C-H activations until April 2020.

6.
ChemSusChem ; 13(13): 3306-3356, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32065843

ABSTRACT

Inexpensive cobalt-catalyzed oxidative C-H functionalization has emerged as a powerful tool for the construction of C-C and C-Het bonds, which offers unique potential for transformative applications to modern organic synthesis. In the early stage, these transformations typically required stoichiometric and toxic transition metals as sacrificial oxidants; thus, the formation of metal-containing waste was inevitable. In contrast, naturally abundant molecular O2 has more recently been successfully employed as a green oxidant in cobalt catalysis, thus considerably improving the sustainability of such transformations. Recently, a significant momentum was gained by the use of electricity as a sustainable and environmentally benign redox reagent in cobalt-catalyzed C-H functionalization, thereby preventing the consumption of cost-intensive chemicals while at the same time addressing the considerable safety hazards related to the use of molecular oxygen in combination with flammable organic solvents. Considering the unparalleled potential of the aforementioned approaches for sustainable green synthesis, this Review summarizes the recent progress in cobalt-catalyzed oxidative C-H activation until early 2020.

7.
Chem Sci ; 11(33): 8657-8670, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-34123124

ABSTRACT

The necessity for more sustainable industrial chemical processes has internationally been agreed upon. During the last decade, the scientific community has responded to this urgent need by developing novel sustainable methodologies targeted at molecular transformations that not only produce reduced amounts of byproducts, but also by the use of cleaner and renewable energy sources. A prime example is the electrochemical functionalization of organic molecules, by which toxic and costly chemicals can be replaced by renewable electricity. Unrivalled levels of resource economy can thereby be achieved via the merger of metal-catalyzed C-H activation with electrosynthesis. This perspective aims at highlighting the most relevant advances in metallaelectro-catalysed C-H activations, with a particular focus on the use of green solvents and sustainable wind power and solar energy until June 2020.

8.
Chem Sci ; 12(8): 2890-2897, 2020 Dec 28.
Article in English | MEDLINE | ID: mdl-34164055

ABSTRACT

Manganaelectro-catalyzed azidation of otherwise inert C(sp3)-H bonds was accomplished using most user-friendly sodium azide as the nitrogen-source. The operationally simple, resource-economic C-H azidation strategy was characterized by mild reaction conditions, no directing group, traceless electrons as the sole redox-reagent, Earth-abundant manganese as the catalyst, high functional-group compatibility and high chemoselectivity, setting the stage for late-stage azidation of bioactive compounds. Detailed mechanistic studies by experiment, spectrophotometry and cyclic voltammetry provided strong support for metal-catalyzed aliphatic radical formation, along with subsequent azidyl radical transfer within a manganese(iii/iv) manifold.

9.
Chemistry ; 24(72): 19166-19170, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30379363

ABSTRACT

Nickel-catalyzed electrochemical C-H aminations were accomplished by chemo- and position-selective C-H activation with ample scope. Detailed mechanistic studies highlighted a facile C-H cleavage with unique chemo-selectivity, while cyclovoltammetric analysis provided support for a nickel(II/III/IV) manifold.

10.
J Am Chem Soc ; 139(4): 1460-1463, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28059507

ABSTRACT

The first catalytic asymmetric bromonium ion-induced polyene cyclization has been achieved by using a chiral BINOL-derived thiophosphoramide catalyst and 1,3-dibromo-5,5-dimethylhydantoin as an electrophilic bromine source. Bromocyclization products are obtained in high yields, with good enantiomeric ratios and high diastereoselectivity, and are abundantly found as scaffolds in natural products.

11.
Chemistry ; 21(34): 11976-9, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26185028

ABSTRACT

Electrophilic halogenation is used to produce a wide variety of halogenated compounds. Previously reported methods have been developed mainly using a reagent-based approach. Unfortunately, a suitable "catalytic" process for halogen transfer reactions has yet to be achieved. In this study, arylamines have been found to generate an N-halo arylamine intermediate, which acts as a highly reactive but selective catalytic electrophilic halogen source. A wide variety of heteroaromatic and aromatic compounds are halogenated using commercially available N-halosuccinimides, for example, NCS, NBS, and NIS, with good to excellent yields and with very high selectivity. In the case of unactivated double bonds, allylic chlorides are obtained under chlorination conditions, whereas bromocyclization occurs for polyolefin. The reactivity of the catalyst can be tuned by varying the electronic properties of the arene moiety of catalyst.


Subject(s)
Aniline Compounds/chemistry , Amides/chemistry , Catalysis , Halogenation , Molecular Structure , Succinates/chemistry
12.
Angew Chem Int Ed Engl ; 53(36): 9622-6, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25044490

ABSTRACT

The reaction of enals with ß-diketones, ß-ketoesters, and malonates bearing a ß-oxyalkyl substituent at the α-position by oxidative NHC catalysis to provide highly substituted ß-lactones is described. Reactions occur with excellent diastereo- and enantioselectivity. The organo cascade comprises two CC bond formations and one CO bond formation. Up to four contiguous stereogenic centers including two fully substituted stereocenters are formed in the cascade.


Subject(s)
Lactones/chemical synthesis , Lewis Acids/chemistry , Lithium Chloride/chemistry , Methane/analogs & derivatives , Catalysis , Cyclohexanes/chemistry , Methane/chemistry , Oxidants/chemistry , Oxidation-Reduction , Stereoisomerism
13.
Chemistry ; 19(15): 4664-78, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23436489

ABSTRACT

This Concept article discusses the potential of oxidative carbene catalysis in synthesis and comprehensively covers pioneering studies as well as recent developments. Oxidative carbene catalysis can be conducted by using inorganic and organic oxidants. Applications in cascade processes, in enantioselective catalysis, and also in natural product synthesis are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...