Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39026849

ABSTRACT

The oligomerization of protein macromolecules on cell membranes plays a fundamental role in regulating cellular function. From modulating signal transduction to directing immune response, membrane proteins (MPs) play a crucial role in biological processes and are often the target of many pharmaceutical drugs. Despite their biological relevance, the challenges in experimental determination have hampered the structural availability of membrane proteins and their complexes. Computational docking provides a promising alternative to model membrane protein complex structures. Here, we present Rosetta-MPDock, a flexible transmembrane (TM) protein docking protocol that captures binding-induced conformational changes. Rosetta-MPDock samples large conformational ensembles of flexible monomers and docks them within an implicit membrane environment. We benchmarked this method on 29 TM-protein complexes of variable backbone flexibility. These complexes are classified based on the root-mean-square deviation between the unbound and bound states (RMSDUB) as: rigid (RMSDUB <1.2 Å), moderately-flexible (RMSDUB ∈ [1.2, 2.2) Å), and flexible targets (RMSDUB > 2.2 Å). In a local docking scenario, i.e. with membrane protein partners starting ≈10 Å apart embedded in the membrane in their unbound conformations, Rosetta-MPDock successfully predicts the correct interface (success defined as achieving 3 near-native structures in the 5 top-ranked models) for 67% moderately flexible targets and 60% of the highly flexible targets, a substantial improvement from the existing membrane protein docking methods. Further, by integrating AlphaFold2-multimer for structure determination and using Rosetta-MPDock for docking and refinement, we demonstrate improved success rates over the benchmark targets from 64% to 73%. Rosetta-MPDock advances the capabilities for membrane protein complex structure prediction and modeling to tackle key biological questions and elucidate functional mechanisms in the membrane environment. The benchmark set and the code is available for public use at github.com/Graylab/MPDock.

2.
bioRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38352434

ABSTRACT

Recent deep-learning (DL) protein design methods have been successfully applied to a range of protein design problems, including the de novo design of novel folds, protein binders, and enzymes. However, DL methods have yet to meet the challenge of de novo membrane protein (MP) and the design of complex ß-sheet folds. We performed a comprehensive benchmark of one DL protein sequence design method, ProteinMPNN, using transmembrane and water-soluble ß-barrel folds as a model, and compared the performance of ProteinMPNN to the new membrane-specific Rosetta Franklin2023 energy function. We tested the effect of input backbone refinement on ProteinMPNN performance and found that given refined and well-defined inputs, ProteinMPNN more accurately captures global sequence properties despite complex folding biophysics. It generates more diverse TMB sequences than Franklin2023 in pore-facing positions. In addition, ProteinMPNN generated TMB sequences that passed state-of-the-art in silico filters for experimental validation, suggesting that the model could be used in de novo design tasks of diverse nanopores for single-molecule sensing and sequencing. Lastly, our results indicate that the low success rate of ProteinMPNN for the design of ß-sheet proteins stems from backbone input accuracy rather than software limitations.

3.
PLoS Comput Biol ; 20(1): e1011296, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38252688

ABSTRACT

Membrane protein structure prediction and design are challenging due to the complexity of capturing the interactions in the lipid layer, such as those arising from electrostatics. Accurately capturing electrostatic energies in the low-dielectric membrane often requires expensive Poisson-Boltzmann calculations that are not scalable for membrane protein structure prediction and design. In this work, we have developed a fast-to-compute implicit energy function that considers the realistic characteristics of different lipid bilayers, making design calculations tractable. This method captures the impact of the lipid head group using a mean-field-based approach and uses a depth-dependent dielectric constant to characterize the membrane environment. This energy function Franklin2023 (F23) is built upon Franklin2019 (F19), which is based on experimentally derived hydrophobicity scales in the membrane bilayer. We evaluated the performance of F23 on five different tests probing (1) protein orientation in the bilayer, (2) stability, and (3) sequence recovery. Relative to F19, F23 has improved the calculation of the tilt angle of membrane proteins for 90% of WALP peptides, 15% of TM-peptides, and 25% of the adsorbed peptides. The performances for stability and design tests were equivalent for F19 and F23. The speed and calibration of the implicit model will help F23 access biophysical phenomena at long time and length scales and accelerate the membrane protein design pipeline.


Subject(s)
Lipid Bilayers , Membrane Proteins , Static Electricity , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Biophysical Phenomena , Peptides
4.
bioRxiv ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37425950

ABSTRACT

Membrane protein structure prediction and design are challenging due to the complexity of capturing the interactions in the lipid layer, such as those arising from electrostatics. Accurately capturing electrostatic energies in the low-dielectric membrane often requires expensive Poisson-Boltzmann calculations that are not scalable for membrane protein structure prediction and design. In this work, we have developed a fast-to-compute implicit energy function that considers the realistic characteristics of different lipid bilayers, making design calculations tractable. This method captures the impact of the lipid head group using a mean-field-based approach and uses a depth-dependent dielectric constant to characterize the membrane environment. This energy function Franklin2023 (F23) is built upon Franklin2019 (F19), which is based on experimentally derived hydrophobicity scales in the membrane bilayer. We evaluated the performance of F23 on five different tests probing (1) protein orientation in the bilayer, (2) stability, and (3) sequence recovery. Relative to F19, F23 has improved the calculation of the tilt angle of membrane proteins for 90% of WALP peptides, 15% of TM-peptides, and 25% of the adsorbed peptides. The performances for stability and design tests were equivalent for F19 and F23. The speed and calibration of the implicit model will help F23 access biophysical phenomena at long time and length scales and accelerate the membrane protein design pipeline.

5.
Nat Commun ; 12(1): 6947, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34845212

ABSTRACT

Each year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met. We describe the implementation of a test server framework and 40 scientific benchmarks, covering numerous applications in Rosetta bio-macromolecular modeling. High performance computing cluster integration allows these benchmarks to run continuously and automatically. Detailed protocol captures are useful for developers and users of Rosetta and other macromolecular modeling tools. The framework and design concepts presented here are valuable for developers and users of any type of scientific software and for the scientific community to create reproducible methods. Specific examples highlight the utility of this framework, and the comprehensive documentation illustrates the ease of adding new tests in a matter of hours.


Subject(s)
Macromolecular Substances/chemistry , Molecular Docking Simulation , Proteins/chemistry , Software/standards , Benchmarking , Binding Sites , Humans , Ligands , Macromolecular Substances/metabolism , Protein Binding , Proteins/metabolism , Reproducibility of Results
6.
J Chem Theory Comput ; 17(8): 5248-5261, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34310137

ABSTRACT

Energy functions are fundamental to biomolecular modeling. Their success depends on robust physical formalisms, efficient optimization, and high-resolution data for training and validation. Over the past 20 years, progress in each area has advanced soluble protein energy functions. Yet, energy functions for membrane proteins lag behind due to sparse and low-quality data, leading to overfit tools. To overcome this challenge, we assembled a suite of 12 tests on independent data sets varying in size, diversity, and resolution. The tests probe an energy function's ability to capture membrane protein orientation, stability, sequence, and structure. Here, we present the tests and use the franklin2019 energy function to demonstrate them. We then identify areas for energy function improvement and discuss potential future integration with machine-learning-based optimization methods. The tests are available through the Rosetta Benchmark Server (https://benchmark.graylab.jhu.edu/) and GitHub (https://github.com/rfalford12/Implicit-Membrane-Energy-Function-Benchmark).

7.
J Phys Chem B ; 124(48): 10943-10951, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33205987

ABSTRACT

We use direct simulations of particle-polyelectrolyte mixtures using the single chain in mean field framework to extract the phase diagram for such systems. At high charges of the particles and low concentration of polymers, we observe the formation of a coacervate phase involving the particles and polyelectrolytes. At low particle charges and/or high concentration of polymers, the mixture undergoes a segregative phase separation into particle-rich and polymer-rich phases, respectively. We also present results for the influence of particle charge heterogeneity on the phase diagram.


Subject(s)
Nanoparticles , Polyelectrolytes , Polymers , Proteins
8.
J Phys Chem B ; 124(22): 4421-4435, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32453566

ABSTRACT

We employed a combination of single chain in mean field methodology and constant pH Monte Carlo framework to compare the influence of charge regulation and charge heterogeneity on the adsorption and bridging characteristics of polyelectrolytes in solution on proteins. By adopting a coarse-grained representation of the proteins as spherical particles and embedding a simple framework for probing charge heterogeneities, we probe the influence of charge patches, net charge of the particle, the ratio of positive to negative charges on the proteins on the net adsorption, and bridging probabilities of polyelectrolytes. Our results demonstrate that charge regulation increases the probability of bridging between two particles when compared to proteins with the same fixed charge. The influence of charge regulation first increases and then decreases with an increase in the number of charge patches of proteins. An increase in the ratio of positive to negative charges and the net charge of the protein are also seen to increase the propensity for polyelectrolyte adsorption and bridging.


Subject(s)
Proteins , Adsorption , Monte Carlo Method , Polyelectrolytes
9.
J Chem Phys ; 152(1): 014904, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31914764

ABSTRACT

Understanding the transport properties of water in self-assembled block copolymer morphologies is important for furthering the use of such materials as water-purifying membranes. In this study, we used coarse-grained dissipative particle dynamics simulations to clarify the influence of pore morphology on the self-diffusion of water in linear-triblock-copolymer membranes. We considered representative lamellar, cylindrical, and gyroid morphologies and present results for both the global and local diffusivities of water in the pores. Our results suggest that the diffusivity of water in the confined, polymer-coated pores differs from that in the unconfined bulk. Explicitly, in confinement, the mobility of water is reduced by the hydrodynamic friction arising from the hydrophilic blocks coating the pore walls. We demonstrate that in lamella and cylindrical morphologies, the latter effects can be rendered as a universal function of the pore size relative to the brush height of the hydrophilic blocks.

10.
Soft Matter ; 14(46): 9475-9488, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30431051

ABSTRACT

We employ a combination of the single chain in mean field simulation approach with the solution of Poisson's equation to study the influence of charge heterogeneities on the structure of protein-polyelectrolyte complexes. By adopting a coarse-grained model of representing proteins as charged nanoparticles, we studied the influence of the pattern of charge heterogeneities, net charge, ratio of positive to negative charges on the patches, and the volume fraction of the particles on the structural and aggregation characteristics of proteins in polyelectrolyte solutions. Our results demonstrate that the pattern of charge heterogeneities can exert a significant influence on the resulting characteristics of the aggregates, in some cases leading to a transformation from polymer-bridged complexes into direct particle aggregates driven by the attraction between oppositely charged patches.


Subject(s)
Models, Molecular , Nanoparticles/chemistry , Polyelectrolytes/chemistry , Proteins/chemistry
11.
Soft Matter ; 14(19): 3748-3759, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29701232

ABSTRACT

We study the structural characteristics of a system of charged nanoparticles in a neutral polymer solution while accounting for the differences in the dielectric constant between the particles, polymer and the solvent. We use a hybrid computational methodology involving a combination of single chain in mean-field simulations and the solution of the Poisson's equation for the electrostatic field. We quantify the resulting particle structural features in terms of radial distribution function among particles as a function of the dielectric contrast, particle charge, particle volume fraction and polymer concentration. In the absence of polymers, charged macroions experience increased repulsion with a lowering of the ratio of particle to solvent dielectric constant. The influence of the dielectric contrast between the particle and the solvent however diminishes with an increase in the particle volume fraction and/or its charge. In the presence of neutral polymers, similar effects manifest, but with the additional physics arising from the fact that the polymer-induced interactions are influenced by the dielectric contrast of the particle and solvent.

SELECTION OF CITATIONS
SEARCH DETAIL