Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Bioorg Chem ; 141: 106897, 2023 12.
Article in English | MEDLINE | ID: mdl-37793265

ABSTRACT

In this report, we present our studies on mRNA, which was modified by introducing various halogen substituents at the C(5) position of the pyrimidine base. Specifically, we synthesized C(5)-halogenated (F, Cl, Br, I) pyrimidine ribonucleoside triphosphates and incorporated them into mRNA during in-vitro transcription. The efficiency of the in-vitro transcription reaction of halogenated pyrimidine was observed to decrease as the size of the halogen substituent increased and the electronegativity thereof decreased (F > Cl > Br) except for iodine. Interestingly, we found that, among the C(5)-halogenated pyrimidine ribonucleotides, mRNA incorporating C(5)-halogenated cytidine (5-F rCTP and 5-Cl rCTP) exhibited more prominent protein expression than mRNA modified with C(5)-halogenated uridine and unmodified mRNA. In particular, in the case of mRNA to which fluorine (5-F rCTP) and chlorine (5-Cl rCTP) were introduced, the protein was dramatically expressed about 4 to 5 times more efficiently than the unmodified mRNA, which was similar to pseudouridine (ψ). More interestingly, when pseudouridine(ψ) and fluorocytidine nucleotides (5-F rCTP), were simultaneously introduced into mRNA for dual incorporation, the protein expression efficiency dramatically increased as much as tenfold. The efficiency of cap-dependent protein expression is much higher than the IRES-dependent (internal ribosome entry site) expression with mRNA incorporating C(5)-halogenated pyrimidine ribonucleotide. We expect these results to contribute meaningfully to the development of therapeutics based on modified mRNA.


Subject(s)
Pseudouridine , Ribonucleotides , RNA, Messenger/genetics , Pyrimidines/pharmacology , Pyrimidines/metabolism , Halogens , mRNA Vaccines
2.
J Virol ; 97(7): e0018023, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37338368

ABSTRACT

Although most of the early events of the hepatitis C virus (HCV) life cycle are well characterized, our understanding of HCV egress is still unclear. Some reports implicate the conventional endoplasmic reticulum (ER)-Golgi route, while some propose noncanonical secretory routes. Initially, the envelopment of HCV nucleocapsid occurs by budding into the ER lumen. Subsequently, the HCV particle exit from the ER is assumed to be mediated by coat protein complex II (COPII) vesicles. COPII vesicle biogenesis also involves the recruitment of cargo to the site of vesicle biogenesis via interaction with COPII inner coat proteins. We investigated the modulation and the specific role of the individual components of the early secretory pathway in HCV egress. We observed that HCV inhibits cellular protein secretion and triggers the reorganization of the ER exit sites and ER-Golgi intermediate compartments (ERGIC). Gene-specific knockdown of the components of this pathway such as SEC16A, TFG, ERGIC-53, and COPII coat proteins demonstrated the functional significance of these components and the distinct role played by these proteins in various aspects of the HCV life cycle. SEC16A is essential for multiple steps in the HCV life cycle, whereas TFG is specifically involved in HCV egress and ERGIC-53 is crucial for HCV entry. Overall, our study establishes that the components of the early secretory pathway are essential for HCV propagation and emphasize the importance of the ER-Golgi secretory route in this process. Surprisingly, these components are also required for the early stages of the HCV life cycle due to their role in overall intracellular trafficking and homeostasis of the cellular endomembrane system. IMPORTANCE The virus life cycle involves entry into the host, replication of the genome, assembly of infectious progeny, and their subsequent release. Different aspects of the HCV life cycle, including entry, genome replication, and assembly, are well characterized; however, our understanding of the HCV release is still not clear and subject to debate due to varied findings. Here, we attempted to address this controversy and enhance our understanding of HCV egress by evaluating the role of the different components of the early secretory pathway in the HCV life cycle. To our surprise, we found that the components of the early secretory pathway are not only essential for HCV release but also contribute to many other earlier events of the HCV life cycle. This study emphasizes the importance of the early secretory pathway for the establishment of productive HCV infection in hepatocytes.


Subject(s)
Endoplasmic Reticulum , Hepatitis C , Humans , Animals , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Secretory Pathway , Hepacivirus/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Protein Transport , Hepatitis C/metabolism , Life Cycle Stages , COP-Coated Vesicles/metabolism
3.
J Virol ; 96(20): e0082822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36197108

ABSTRACT

Mitochondrial fitness is governed by mitochondrial quality control pathways comprising mitochondrial dynamics and mitochondrial-selective autophagy (mitophagy). Disruption of these processes has been implicated in many human diseases, including viral infections. Here, we report a comprehensive analysis of the effect of dengue infection on host mitochondrial homeostasis and its significance in dengue disease pathogenesis. Despite severe mitochondrial stress and injury, we observed that the pathways of mitochondrial quality control and mitochondrial biogenesis are paradoxically downregulated in dengue-infected human liver cells. This leads to the disruption of mitochondrial homeostasis and the onset of cellular injury and necrotic death in the infected cells. Interestingly, dengue promotes global autophagy but selectively disrupts mitochondrial-selective autophagy (mitophagy). Dengue downregulates the expression of PINK1 and Parkin, the two major proteins involved in tagging the damaged mitochondria for elimination through mitophagy. Mitophagy flux assays also suggest that Parkin-independent pathways of mitophagy are also inactive during dengue infection. Dengue infection also disrupts mitochondrial biogenesis by downregulating the master regulators PPARγ and PGC1α. Dengue-infected cells release mitochondrial damage-associated molecular patterns (mtDAMPs) such as mitochondrial DNA into the cytosol and extracellular milieu. Furthermore, the challenge of naive immune cells with culture supernatants from dengue-infected liver cells was sufficient to trigger proinflammatory signaling. In correlation with our in vitro observations, dengue patients have high levels of cell-free mitochondrial DNA in their blood in proportion to the degree of thrombocytopenia. Overall, our study shows how defective mitochondrial homeostasis in dengue-infected liver cells can drive dengue disease pathogenesis. IMPORTANCE Many viruses target host cell mitochondria to create a microenvironment conducive to viral dissemination. Dengue virus also exploits host cell mitochondria to facilitate its viral life cycle. Dengue infection of liver cells leads to severe mitochondrial injury and inhibition of proteins that regulate mitochondrial quality control and biogenesis, thereby disrupting mitochondrial homeostasis. A defect in mitochondrial quality control leads to the accumulation of damaged mitochondria and promotes cellular injury. This leads to the release of mitochondrial damage-associated molecular patterns (mt-DAMPs) into the cell cytoplasm and extracellular milieu. These mt-DAMPs activate the naive immune cells and trigger proinflammatory signaling, leading to the release of cytokines and chemokines, which may trigger systemic inflammation and contribute to dengue disease pathogenesis. In correlation with this, we observed high levels of cell-free mitochondrial DNA in dengue patient blood. This study provides insight into how the disruption of mitochondrial quality control in dengue-infected cells can trigger inflammation and drive dengue disease pathogenesis.


Subject(s)
Dengue , PPAR gamma , Humans , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mitochondria/metabolism , Ubiquitin-Protein Ligases/metabolism , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/pharmacology , Protein Kinases/metabolism , Cytokines/metabolism , Inflammation/pathology , Dengue/pathology
SELECTION OF CITATIONS
SEARCH DETAIL