Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 110(11): e16254, 2023 11.
Article in English | MEDLINE | ID: mdl-37938809

ABSTRACT

PREMISE: Glacial/interglacial cycles and topographic complexity are both considered to have shaped today's diverse phylogeographic patterns of taxa from unglaciated eastern North America (ENA). However, few studies have focused on the phylogeography and population dynamics of wide-ranging ENA herbaceous species occurring in forest understory habitat. We examined the phylogeographic pattern and evolutionary history of Podophyllum peltatum L., a widely distributed herb inhabiting deciduous forests of ENA. METHODS: Using chloroplast DNA (cpDNA) sequences and nuclear microsatellite loci, we investigated the population structure and genetic diversity of the species. Molecular dating, demographic history analyses, and ecological niche modeling were also performed to illustrate the phylogeographic patterns. RESULTS: Our cpDNA results identified three main groups that are largely congruent with boundaries along the Appalachian Mountains and the Mississippi River, two major geographic barriers in ENA. Populations located to the east of the Appalachians and along the central Appalachians exhibited relatively higher levels of genetic diversity. Extant lineages may have diverged during the late Miocene, and range expansions of different groups may have happened during the Pleistocene glacial/interglacial cycles. CONCLUSIONS: Our findings indicate that geographic barriers may have started to facilitate the population divergence in P. peltatum before the Pleistocene. Persistence in multiple refugia, including areas around the central Appalachians during the Quaternary glacial period, and subsequent expansions under hospitable climatic condition, especially westward expansion, are likely responsible for the species' contemporary genetic structure and phylogeographic pattern.


Subject(s)
Podophyllum peltatum , Phylogeography , Podophyllum peltatum/genetics , DNA, Chloroplast/genetics , DNA, Chloroplast/chemistry , Demography , Appalachian Region , Plants/genetics , Genetic Variation , Phylogeny
2.
Sci Rep ; 13(1): 1244, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36690683

ABSTRACT

Throughout the SARS-CoV-2 pandemic, the use of botanical dietary supplements in the United States has increased, yet their safety and efficacy against COVID-19 remains underexplored. The Quave Natural Product Library is a phylogenetically diverse collection of botanical and fungal natural product extracts including popular supplement ingredients. Evaluation of 1867 extracts and 18 compounds for virus spike protein binding to host cell ACE2 receptors in a SARS-CoV-2 pseudotyped virus system identified 310 extracts derived from 188 species across 76 families (3 fungi, 73 plants) that exhibited ≥ 50% viral entry inhibition activity at 20 µg/mL. Extracts exhibiting mammalian cytotoxicity > 15% and those containing cardiotoxic cardiac glycosides were eliminated. Three extracts were selected for further testing against four pseudotyped variants and infectious SARS-CoV-2 and were then further chemically characterized, revealing the potent (EC50 < 5 µg/mL) antiviral activity of Solidago altissima L. (Asteraceae) flowers and Pteridium aquilinum (L.) Kuhn (Dennstaedtiaceae) rhizomes.


Subject(s)
Biological Products , COVID-19 , Humans , Animals , SARS-CoV-2 , Phylogeny , Virus Internalization , Antiviral Agents , Plant Extracts , Protein Binding , Mammals
3.
Chem Rev ; 121(6): 3495-3560, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33164487

ABSTRACT

The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Biological Products/chemistry , Plant Extracts/chemistry , Plants/chemistry , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biological Products/pharmacology , Drug Discovery , Drug Resistance, Microbial , Humans , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/pharmacology , Structure-Activity Relationship , Terpenes/chemistry , Terpenes/pharmacology
4.
ACS Infect Dis ; 6(7): 1667-1673, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32579326

ABSTRACT

The rise of antibiotic resistance presents a significant healthcare challenge and precludes the use of many otherwise valuable antibiotics. One potential solution to this problem is the use of antibiotics in combination with resistance-modifying agents, compounds that act synergistically with existing antibiotics to resensitize previously resistant bacteria. In this study, 12(S),16ξ-dihydroxycleroda-3,13-dien-15,16-olide, a clerodane diterpene isolated from the medicinal plant Callicarpa americana, was found to synergize with oxacillin against methicillin-resistant Staphylococcus aureus. This synergy was confirmed by checkerboard (fractional inhibitory concentration index (FICI) = 0.125) and time-kill assays, with a subinhibitory dose of 12(S),16ξ-dihydroxycleroda-3,13-dien-15,16-olide causing the effective concentration of oxacillin to fall below the susceptibility breakpoint for S. aureus, a >32-fold decrease in both cases.


Subject(s)
Callicarpa , Diterpenes, Clerodane , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Diterpenes, Clerodane/pharmacology , Drug Synergism , Microbial Sensitivity Tests , Oxacillin , Staphylococcus aureus
5.
Front Pharmacol ; 11: 586548, 2020.
Article in English | MEDLINE | ID: mdl-33488385

ABSTRACT

Background: Antimicrobial resistance represents a serious threat to human health across the globe. The cost of bringing a new antibiotic from discovery to market is high and return on investment is low. Furthermore, the development of new antibiotics has slowed dramatically since the 1950s' golden age of discovery. Plants produce a variety of bioactive secondary metabolites that could be used to fuel the future discovery pipeline. While many studies have focused on specific aspects of plants and plant natural products with antibacterial properties, a comprehensive review of the antibacterial potential of plants has never before been attempted. Objectives: This systematic review aims to evaluate reports on plants with significant antibacterial activities. Methods: Following the PRISMA model, we searched three electronic databases: Web of Science, PubMed and SciFinder by using specific keywords: "plant," "antibacterial," "inhibitory concentration." Results: We identified a total of 6,083 articles published between 1946 and 2019 and then reviewed 66% of these (4,024) focusing on articles published between 2012 and 2019. A rigorous selection process was implemented using clear inclusion and exclusion criteria, yielding data on 958 plant species derived from 483 scientific articles. Antibacterial activity is found in 51 of 79 vascular plant orders throughout the phylogenetic tree. Most are reported within eudicots, with the bulk of species being asterids. Antibacterial activity is not prominent in monocotyledons. Phylogenetic distribution strongly supports the concept of chemical evolution across plant clades, especially in more derived eudicot families. The Lamiaceae, Fabaceae and Asteraceae were the most represented plant families, while Cinnamomum verum, Rosmarinus vulgaris and Thymus vulgaris were the most studied species. South Africa was the most represented site of plant collection. Crude extraction in methanol was the most represented type of extraction and leaves were the main plant tissue investigated. Finally, Staphylococcus aureus was the most targeted pathogenic bacteria in these studies. We closely examine 70 prominent medicinal plant species from the 15 families most studied in the literature. Conclusion: This review depicts the current state of knowledge regarding antibacterials from plants and provides powerful recommendations for future research directions.

SELECTION OF CITATIONS
SEARCH DETAIL
...