Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Anim Health Prod ; 55(6): 389, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37917217

ABSTRACT

The Gobra zebu genetic breeding program has resulted in the genetic improvement of a new population. This population gained genetic characteristics that set them apart from the other cattle populations reared in Senegal. The cause of these differences might be the reproductive isolation and selection to which this population of the "Centre de Recherches Zootechniques" of Dahra has been subjected since the 1950s. This study aimed to assess the genetic differentiation and structuration of this population compared to the main cattle breeds used in Senegal. A total of 180 individuals, selected from the Gobra selection nucleus and bovine populations from four main breeds in Senegal, were included in this study. We used a panel of 21 microsatellite markers among those recommended by the Food Agriculture Organization, to conduct the molecular genotyping of our sampled populations. The basic genetic parameters of differentiation and structuration were calculated using various bioinformatics software. The results of this study, particularly the degrees of genetic differentiation (Fst), the coefficient of genetic homogeneity (Gst), and the gene flow (Nm), show a significant genetic differentiation of the Gobra from the station compared to the other populations studied. Structuring and phylogeny analyses reveal a micro-structuring within the Gobra population as a novelty. This micro-structuring clearly identifies the Gobra individuals from Dahra's station among the other Gobra populations studied. The main causes of these observations would be reproductive isolation and the selection pressure exerted on this population for several decades.


Subject(s)
Breeding , Genetic Drift , Humans , Cattle/genetics , Animals , Senegal , Microsatellite Repeats , Genetic Variation
2.
Vaccines (Basel) ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37896941

ABSTRACT

Dengue fever is the most prevalent arboviral disease worldwide. Dengue virus (DENV), the etiological agent, is known to have been circulating in Senegal since 1970, though for a long time, virus epidemiology was restricted to the circulation of sylvatic DENV-2 in south-eastern Senegal (the Kedougou region). In 2009 a major shift was noticed with the first urban epidemic, which occurred in the Dakar region and was caused by DENV-3. Following the notification by Senegal, many other West African countries reported DENV-3 epidemics. Despite these notifications, there are scarce studies and data about the genetic diversity and molecular evolution of DENV-3 in West Africa. Using nanopore sequencing, phylogenetic, and phylogeographic approaches on historic strains and 36 newly sequenced strains, we studied the molecular evolution of DENV-3 in Senegal between 2009 and 2022. We then assessed the impact of the observed genetic diversity on the efficacy of preventive countermeasures and vaccination by mapping amino acid changes against vaccine strains. The results showed that the DENV-3 strains circulating in Senegal belong to genotype III, similarly to strains from other West African countries, while belonging to different clades. Phylogeographic analysis based on nearly complete genomes revealed three independent introduction events from Asia and Burkina Faso. Comparison of the amino acids in the CprM-E regions of genomes from the Senegalese strains against the vaccine strains revealed the presence of 22 substitutions (7 within the PrM and 15 within the E gene) when compared to CYD-3, while 23 changes were observed when compared to TV003 (6 within the PrM and 17 within the E gene). Within the E gene, most of the changes compared to the vaccine strains were located in the ED-III domain, which is known to be crucial in neutralizing antibody production. Altogether, these data give up-to-date insight into DENV-3 genomic evolution in Senegal which needs to be taken into account in future vaccination strategies. Additionally, they highlight the importance of the genomic epidemiology of emerging pathogens in Africa and call for the implementation of a pan-African network for genomic surveillance of dengue virus.

3.
Sci Rep ; 13(1): 16410, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37775717

ABSTRACT

Studying the behaviour and trophic preferences of mosquitoes is an important step in understanding the exposure of vertebrate hosts to vector-borne diseases. In the case of human malaria, transmission increases when mosquitoes feed more on humans than on other animals. Therefore, understanding the spatio-temporal dynamics of vectors and their feeding preferences is essential for improving vector control measures. In this study, we investigated the feeding behaviour of Anopheles mosquitoes at two sites in the Sudanian areas of Senegal where transmission is low following the implementation of vector control measures. Blood-fed mosquitoes were collected monthly from July to November 2022 by pyrethrum spray catches in sleeping rooms of almost all houses in Dielmo and Ndiop villages, and blood meals were identified as from human, bovine, ovine, equine and chicken by ELISA. Species from the An. gambiae complex were identified by PCR. The types and numbers of potential domestic animal hosts were recorded in each village. The Human Blood Index (HBI) and the Manly Selection Ratio (MSR) were calculated to determine whether hosts were selected in proportion to their abundance. Spatio-temporal variation in HBI was examined using the Moran's index. A total of 1251 endophilic Anopheles females were collected in 115 bedrooms, including 864 blood fed females of 6 species. An. arabiensis and An. funestus were predominant in Dielmo and Ndiop, respectively. Of the 864 blood meals tested, 853 gave a single host positive result mainly on bovine, equine, human, ovine and chicken in decreasing order in both villages. Overall, these hosts were not selected in proportion to their abundance. The human host was under-selected, highlighting a marked zoophily for the vectors. Over time and space, the HBI were low with no obvious trend, with higher and lower values observed in each of the five months at different points in each village. These results highlight the zoophilic and exophagic behaviour of malaria vectors. This behaviour is likely to be a consequence of the distribution and use of LLINs in both villages and may increase risk of residual outdoor transmission. This underlines the need to study the feeding host profile of outdoor resting populations and how domestic animals may influence malaria epidemiology in order to tailor effective malaria vector control strategies in the two villages.


Subject(s)
Anopheles , Malaria , Female , Animals , Humans , Sheep , Cattle , Horses , Malaria/prevention & control , Malaria/veterinary , Malaria/epidemiology , Mosquito Vectors , Insect Vectors , Feeding Behavior , Animals, Domestic , Mosquito Control/methods
4.
Vet Med Sci ; 8(5): 2173-2182, 2022 09.
Article in English | MEDLINE | ID: mdl-35781798

ABSTRACT

BACKGROUND: The Gobra zebu and N'dama taurine cattle breeds are important genetic animal resources for Senegal. For several decades, genetic breeding programmes have been devoted to them at the Centre de Recherches Zootechniques de Dahra and Kolda. Since then, these animals have been subjected to mass selection, mainly in closed selection nuclei. OBJECTIVE: This study aims to assess the genetic diversity within these selection nuclei in order to orient future selection strategies. MATERIAL AND METHODS: The study was carried out on the Gobra zebu and N'dama taurine populations from selection nuclei of Dahra and Kolda respectively, which were compared to 5 other populations of the main cattle breeds in Senegal. One hundred eighty (180) animals were genotyped with 21 microsatellite markers recommended by the Food and Agriculture Organisation. RESULTS: All populations were found to be polymorphic with a PIC of over 55%. However, animals from the CRZ-Dahra (indigenous) and CRZ-Kolda stations had the lowest mean heterozygosity (0.643 and 0.591 respectively). The other populations had an average heterozygosity between 0.650 and 0.737. CONCLUSION: The cattle populations maintained at the different CRZs show a lower genetic diversity than the other populations described in our study. The main reasons for this are reproductive isolation and selection pressure on these populations.


Subject(s)
Cattle , Genetics, Population , Animals , Cattle/genetics , Genetic Variation , Microsatellite Repeats , Senegal
SELECTION OF CITATIONS
SEARCH DETAIL
...