Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Biochem Biophys Rep ; 32: 101371, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36386440

ABSTRACT

Ganoderma lucidum is known as lingzhi mushroom, which is said to have medicinal properties by the local residents. This research was focused to assess the antidepressant, anxiolytic, and sedative activities of the mentioned mushroom extracts by means of in vivo and in silico approaches. The antidepressant, anxiolytic, and sedative properties of the methanol extracts of G. lucidum (MEGL) were assessed using the forced swim test hole board, open field test, elevated plus maze, hole cross test, and thiopental sodium-induced sleeping time. The extracts revealed significant antidepressant, anxiolytic, and sedative activities in a dose-dependent manner. Rutin and quercetin were found to be the most effective enzyme inhibitors in the molecular docking study. According to the findings of in vivo and molecular docking study, it could be forecast that, the extract could have substantial antidepressant, anxiolytic, and sedative characteristics and deep molecular strategies on this extracts might create a target for the development of novel therapeutics. Further investigations are needed to appraise the molecular mechanisms implicated and isolate the bioactive components.

2.
Heliyon ; 8(8): e10220, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36051270

ABSTRACT

Terminalia chebula Retz, commonly known as 'Haritaki/Myrobalan,' has been utilised as a traditional medicine for a long time. It has been extensively exercised in various indigenous medicine practices like Unani, Tibb, Ayurveda, and Siddha to remedy human ailments such as bleeding, carminative, dysentery, liver tonic, digestive, antidiarrheal, analgesic, anthelmintic, antibacterial and helpful in skin disorders. Studies on the pharmacological effects of T. chebula and its phytoconstituents documented between January, 1996 and December, 2021 were explored using various electronic databases. During the time mentioned above, several laboratory approaches revealed the biological properties of T. chebula, including antioxidative, antiproliferative, anti-microbial, proapoptotic, anti-diabetic, anti-ageing, hepatoprotective, anti-inflammatory, and antiepileptic. It is also beneficial in glucose and lipid metabolism and prevents atherogenesis and endothelial dysfunction. Different parts of T. chebula such as fruits, seeds, galls, barks extracted with various solvent systems (aqueous, ethanol, methanol, chloroform, ethyl-acetate) revealed major bioactive compounds like chebulic acid, chebulinic acid, and chebulaginic acid, which in turn proved to have valuable pharmacological properties through broad scientific investigations. There is a common link between chebulagic acid and chebulanin with its antioxidant property, antiaging activity, antiinflammatory, antidiabetic activity, and cardioprotective activity. The actions may be through neutralizing the free radicals responsible for producing tissue damage alongside interconnecting many other diseases. The current review summarises the scientifically documented literature on pharmacological potentials and chemical compositions of T. chebula, which is expected to investigate further studies on this subject.

3.
Saudi J Biol Sci ; 29(5): 3791-3805, 2022 May.
Article in English | MEDLINE | ID: mdl-35844375

ABSTRACT

Multidrug-resistant bacterial infections, helminthiasis, thrombosis, anxiety and insomnia are some of the major global health concerns. Vigna mungo (L.) Hepper (VM) has been used traditionally to treat microbial infection, helminthic disorder, schizophrenia, memory loss, and blood circulatory problem. This research aims to discover antibacterial, anthelmintic, thrombolytic and neuropharmacological effects of the methanol extract of Vigna mungo seeds (MESVM), and also in-silico prediction of relevant lead compounds by molecular docking and ADME/T analysis. The crude extracts and subsequent fractions of MESVM were investigated for antibacterial activity by disc diffusion method, anthelmintic activity by paralysis and death test on earthworms, and thrombolytic activity by in vitro blood clot dissolution test. Open-field test and elevated plus maze test were performed for evaluating anxiolytic activity of the extracts. Using molecular docking, ligand poses of selected VM seeds' phytoconstituents were predicted targeting tubulin, GlcN-6-P synthase, and human tissue plasminogen activator proteins for anthelmintic, antibacterial, and thrombolytic activity, respectively. In the antibacterial activity test, the MESVM at 10000 µg/mL concentration created highest and significant (P < 0.001) zone of inhibition against Staphylococcus aureus (15.42 mm) and Escherichia coli (12 mm) compared with tetracycline. The MESVM exhibited remarkable anthelmintic activity at 50 mg/mL concentration with 35.4 min paralysis time, 75.2 min death time and were closer to the durations of standard drug albendazole. No test extract showed anxiolytic activity. In thrombolytic activity test, all concentrations of MESVM produced clot lytic activity with high significance (P < 0.001) in comparison with the blank. In docking, 2'-hydroxygenistein, cyclokievitone hydrate, and aureol displayed maximum affinity to the target proteins for anthelmintic, antibacterial, and thrombolytic activity, respectively. This research revealed that the MESVM demonstrated potential anthelmintic, antibacterial and thrombolytic effects that confirmed the folkloric uses of VM and the found relevant lead compounds might be further optimized in future drug development.

5.
Molecules ; 27(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163918

ABSTRACT

The spread of the Dengue virus over the world, as well as multiple outbreaks of different serotypes, has resulted in a large number of deaths and a medical emergency, as no viable medications to treat Dengue virus patients have yet been found. In this paper, we provide an in silico virtual screening and molecular dynamics-based analysis to uncover efficient Dengue infection inhibitors. Based on a Google search and literature mining, a large phytochemical library was generated and employed as ligand molecules. In this investigation, the protein target NS2B/NS3 from Dengue was employed, and around 27 compounds were evaluated in a docking study. Phellodendroside (-63 kcal/mole), quercimeritrin (-59.5 kcal/mole), and quercetin-7-O-rutinoside (-54.1 kcal/mole) were chosen based on their binding free energy in MM-GBSA. The tested compounds generated numerous interactions at Lys74, Asn152, and Gln167 residues in the active regions of NS2B/NS3, which is needed for the protein's inhibition. As a result, the stable mode of docked complexes is defined by various descriptors from molecular dynamics simulations, such as RMSD, SASA, Rg, RMSF, and hydrogen bond. The pharmacological properties of the compounds were also investigated, and no toxicity was found in computational ADMET properties calculations. As a result, this computational analysis may aid fellow researchers in developing innovative Dengue virus inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue/drug therapy , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/pharmacology , Protease Inhibitors/pharmacology , Dengue/pathology , Dengue/virology , High-Throughput Screening Assays , Humans , Serine Endopeptidases/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors
6.
ACS Omega ; 6(47): 32043-32071, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34870027

ABSTRACT

Marburg virus disease (MVD) caused by the Marburg virus (MARV) generally appears with flu-like symptoms and leads to severe hemorrhagic fever. It spreads via direct contact with infected individuals or animals. Despite being considered to be less threatening in terms of appearances and the number of infected patients, the high fatality rate of this pathogenic virus is a major concern. Until now, no vaccine has been developed to combat this deadly virus. Therefore, vaccination for this virus is necessary to reduce its mortality. Our current investigation focuses on the design and formulation of a multi-epitope vaccine based on the structural proteins of MARV employing immunoinformatics approaches. The screening of potential T-cell and B-cell epitopes from the seven structural proteins of MARV was carried out through specific selection parameters. Afterward, we compiled the shortlisted epitopes by attaching them to an appropriate adjuvant and linkers. Population coverage analysis, conservancy analysis, and MHC cluster analysis of the shortlisted epitopes were satisfactory. Importantly, physicochemical characteristics, human homology assessment, and structure validation of the vaccine construct delineated convenient outcomes. We implemented disulfide bond engineering to stabilize the tertiary or quaternary interactions. Furthermore, stability and physical movements of the vaccine protein were explored using normal-mode analysis. The immune simulation study of the vaccine complexes also exhibited significant results. Additionally, the protein-protein docking and molecular dynamics simulation of the final construct exhibited a higher affinity toward toll-like receptor-4 (TLR4). From simulation trajectories, multiple descriptors, namely, root mean square deviations (rmsd), radius of gyration (Rg), root mean square fluctuations (RMSF), solvent-accessible surface area (SASA), and hydrogen bonds, have been taken into account to demonstrate the inflexible and rigid nature of receptor molecules and the constructed vaccine. Inclusively, our findings suggested the vaccine constructs' ability to regulate promising immune responses against MARV pathogenesis.

7.
Biology (Basel) ; 10(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34440024

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a contemporary coronavirus, has impacted global economic activity and has a high transmission rate. As a result of the virus's severe medical effects, developing effective vaccinations is vital. Plant-derived metabolites have been discovered as potential SARS-CoV-2 inhibitors. The SARS-CoV-2 main protease (Mpro) is a target for therapeutic research because of its highly conserved protein sequence. Gas chromatography-mass spectrometry (GC-MS) and molecular docking were used to screen 34 compounds identified from Leucas zeylanica for potential inhibitory activity against the SARS-CoV-2 Mpro. In addition, prime molecular mechanics-generalized Born surface area (MM-GBSA) was used to screen the compound dataset using a molecular dynamics simulation. From molecular docking analysis, 26 compounds were capable of interaction with the SARS-CoV-2 Mpro, while three compounds, namely 11-oxa-dispiro[4.0.4.1]undecan-1-ol (-5.755 kcal/mol), azetidin-2-one 3,3-dimethyl-4-(1-aminoethyl) (-5.39 kcal/mol), and lorazepam, 2TMS derivative (-5.246 kcal/mol), exhibited the highest docking scores. These three ligands were assessed by MM-GBSA, which revealed that they bind with the necessary Mpro amino acids in the catalytic groove to cause protein inhibition, including Ser144, Cys145, and His41. The molecular dynamics simulation confirmed the complex rigidity and stability of the docked ligand-Mpro complexes based on the analysis of mean radical variations, root-mean-square fluctuations, solvent-accessible surface area, radius of gyration, and hydrogen bond formation. The study of the postmolecular dynamics confirmation also confirmed that lorazepam, 11-oxa-dispiro[4.0.4.1]undecan-1-ol, and azetidin-2-one-3, 3-dimethyl-4-(1-aminoethyl) interact with similar Mpro binding pockets. The results of our computerized drug design approach may assist in the fight against SARS-CoV-2.

8.
Pharmaceutics ; 13(6)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198801

ABSTRACT

Heart failure (HF) is a complicated clinical syndrome that is considered an increasingly frequent reason for hospitalization, characterized by a complex therapeutic regimen, reduced quality of life, and high morbidity. Long-standing hypertension ultimately paves the way for HF. Recently, there have been improvements in the treatment of hypertension and overall management not limited to only conventional medications, but several novel pathways and their pharmacological alteration are also conducive to the treatment of hypertension. Beta-arrestin (ß-arrestin), a protein responsible for beta-adrenergic receptors' (ß-AR) functioning and trafficking, has recently been discovered as a potential regulator in hypertension. ß-arrestin isoforms, namely ß-arrestin1 and ß-arrestin2, mainly regulate cardiac function. However, there have been some controversies regarding the function of the two ß-arrestins in hypertension regarding HF. In the present review, we try to figure out the paradox between the roles of two isoforms of ß-arrestin in the treatment of HF.

9.
Futur J Pharm Sci ; 7(1): 119, 2021.
Article in English | MEDLINE | ID: mdl-34150911

ABSTRACT

BACKGROUND: COVID-19, a respiratory tract infection caused by SARS-CoV-2, is a burning question worldwide as it gives rise to a pandemic situation. No specific medications are still recommended for COVID-19; however, healthcare support is crucial for ameliorating the disease condition. Pharmacists are the frontline fighters who are responsible for providing healthcare support to the COVID-19 infected patients around the world. This review endeavored to briefly rationalize the contributions of several pharmacy professionals in diverse fields along with their collaborative efforts and dedication regarding their limitations during the COVID-19 situation and view the prospects of pharmaceutical care services in the post-pandemic period. MAIN BODY OF THE ABSTRACT: Online databases were utilized to search for scholarly articles and organizational websites, to sum up the information about the contemporary and expanded role of pharmacists. Key articles were retrieved from Google Scholar, PubMed, and Science Direct databases using terms: "COVID-19," "novel coronavirus," "community," "industrial," "hospital," "clinical," "recognition," "obstacles," "collaboration," "SARS-CoV-2," "healthcare," and "outbreak" in combination with "pharmacist." The articles were included from the inception of the pandemic to January 25, 2021. The current review found pharmacist's global contributions and involvements with other professionals to provide healthcare services amidst COVID-19. This included testing of suspects, providing medical information, psycho-social support, debunking myths, mitigating drug shortage events, telemedicine, e-prescription, infection control, and controlling the drug supply chain. In many countries, pharmacists' activities were much appreciated but in some countries, they were not properly acknowledged for their contributions amidst COVID-19 outbreak. They played additional roles such as participating in the antimicrobial stewardship team, improving value-added services, conducting clinical data analysis to suppress the outspread of the SARS-CoV-2. SHORT CONCLUSION: During the COVID-19 pandemic while the whole world is fighting against an invisible virus, the pharmacists are the earnest hero to serve their responsibilities along with additional activities. They need to be prepared and collaborate with other healthcare professionals further to meet the challenges of post-pandemic circumstances.

10.
Front Mol Biosci ; 8: 625391, 2021.
Article in English | MEDLINE | ID: mdl-34124140

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first recognized in Wuhan in late 2019 and, since then, had spread globally, eventually culminating in the ongoing pandemic. As there is a lack of targeted therapeutics, there is certain opportunity for the scientific community to develop new drugs or vaccines against COVID-19 and so many synthetic bioactive compounds are undergoing clinical trials. In most of the countries, due to the broad therapeutic spectrum and minimal side effects, medicinal plants have been used widely throughout history as traditional healing remedy. Because of the unavailability of synthetic bioactive antiviral drugs, hence all possible efforts have been focused on the search for new drugs and alternative medicines from different herbal formulations. In recent times, it has been assured that the Mpro, also called 3CLpro, is the SARS-CoV-2 main protease enzyme responsible for viral reproduction and thereby impeding the host's immune response. As such, Mpro represents a highly specified target for drugs capable of inhibitory action against coronavirus disease 2019 (COVID-19). As there continue to be no clear options for the treatment of COVID-19, the identification of potential candidates has become a necessity. The present investigation focuses on the in silico pharmacological activity of Calotropis gigantea, a large shrub, as a potential option for COVID-19 Mpro inhibition and includes an ADME/T profile analysis of that ligand. For this study, with the help of gas chromatography-mass spectrometry analysis of C. gigantea methanolic leaf extract, a total of 30 bioactive compounds were selected. Our analyses unveiled the top four options that might turn out to be prospective anti-SARS-CoV-2 lead molecules; these warrant further exploration as well as possible application in processes of drug development to combat COVID-19.

11.
Plants (Basel) ; 10(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917986

ABSTRACT

This study assessed the anxiolytic and antidepressant activities of a methanol leaves extract of Cnesmone javanica (CV) in Swiss albino mice. The study found a significant increase in the percentage of time spent in the open arms of an elevated plus maze and in the incidence of head dipping in hole-board tests following the administration of 400 mg/kg of CV or 1 mg/kg diazepam. Moreover, a significant (p < 0.001) dose-dependent reduction was observed in the immobility time following CV (200 and 400 mg/kg) and fluoxetine (20 mg/kg) administration for forced swimming and tail suspension tests. Gas chromatography-mass spectroscopy (GC-MS) analysis identified 62 compounds in CV, consisting primarily of phenols, terpenoids, esters, and other organic compounds. A molecular docking study was performed to assess the anxiolytic and antidepressant effects of 45 selected compounds against human serotonin transporter and potassium channels receptors. Network pharmacology was performed to predict the pathways involved in these neuropharmacological effects. Overall, CV demonstrated significant and dose-dependent anxiolytic and antidepressant effects due to the presence of several bioactive phytoconstituents, which should be further explored using more advanced and in-depth mechanistic research.

12.
Brief Bioinform ; 22(2): 1476-1498, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33623995

ABSTRACT

Coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic by the World Health Organization, and the situation worsens daily, associated with acute increases in case fatality rates. The main protease (Mpro) enzyme produced by SARS-CoV-2 was recently demonstrated to be responsible for not only viral reproduction but also impeding host immune responses. The element selenium (Se) plays a vital role in immune functions, both directly and indirectly. Thus, we hypothesised that Se-containing heterocyclic compounds might curb the activity of SARS-CoV-2 Mpro. We performed a molecular docking analysis and found that several of the selected selenocompounds showed potential binding affinities for SARS-CoV-2 Mpro, especially ethaselen (49), which exhibited a docking score of -6.7 kcal/mol compared with the -6.5 kcal/mol score for GC376 (positive control). Drug-likeness calculations suggested that these compounds are biologically active and possess the characteristics of ideal drug candidates. Based on the binding affinity and drug-likeness results, we selected the 16 most effective selenocompounds as potential anti-COVID-19 drug candidates. We also validated the structural integrity and stability of the drug candidate through molecular dynamics simulation. Using further in vitro and in vivo experiments, we believe that the targeted compound identified in this study (ethaselen) could pave the way for the development of prospective drugs to combat SARS-CoV-2 infections and trigger specific host immune responses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Heterocyclic Compounds/pharmacology , Protease Inhibitors/pharmacology , Selenium/analysis , Antiviral Agents/chemistry , Computational Biology , Computer Simulation , Coronavirus 3C Proteases/chemistry , Heterocyclic Compounds/chemistry , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protein Structure, Tertiary , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Reproducibility of Results , Sulfonic Acids
13.
Molecules ; 26(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557235

ABSTRACT

The current study attempted, for the first time, to qualitatively and quantitatively determine the phytochemical components of Elatostema papillosum methanol extract and their biological activities. The present study represents an effort to correlate our previously reported biological activities with a computational study, including molecular docking, and ADME/T (absorption, distribution, metabolism, and excretion/toxicity) analyses, to identify the phytochemicals that are potentially responsible for the antioxidant, antidepressant, anxiolytic, analgesic, and anti-inflammatory activities of this plant. In the gas chromatography-mass spectroscopy analysis, a total of 24 compounds were identified, seven of which were documented as being bioactive based on their binding affinities. These seven were subjected to molecular docking studies that were correlated with the pharmacological outcomes. Additionally, the ADME/T properties of these compounds were evaluated to determine their drug-like properties and toxicity levels. The seven selected, isolated compounds displayed favorable binding affinities to potassium channels, human serotonin receptor, cyclooxygenase-1 (COX-1), COX-2, nuclear factor (NF)-κB, and human peroxiredoxin 5 receptor proteins. Phytol acetate, and terpene compounds identified in E. papillosum displayed strong predictive binding affinities towards the human serotonin receptor. Furthermore, 3-trifluoroacetoxypentadecane showed a significant binding affinity for the KcsA potassium channel. Eicosanal showed the highest predicted binding affinity towards the human peroxiredoxin 5 receptor. All of these findings support the observed in vivo antidepressant and anxiolytic effects and the in vitro antioxidant effects observed for this extract. The identified compounds from E. papillosum showed the lowest binding affinities towards COX-1, COX-2, and NF-κB receptors, which indicated the inconsequential impacts of this extract against the activities of these three proteins. Overall, E. papillosum appears to be bioactive and could represent a potential source for the development of alternative medicines; however, further analytical experiments remain necessary.


Subject(s)
Computer Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Urticaceae/chemistry , Analgesics/chemistry , Analgesics/metabolism , Analgesics/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/chemistry , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Molecular Docking Simulation , Plant Extracts/metabolism , Protein Conformation
14.
RSC Adv ; 11(29): 18103-18121, 2021 May 13.
Article in English | MEDLINE | ID: mdl-35480208

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in a contagious respiratory tract infection that has become a global burden since the end of 2019. Notably, fewer patients infected with SARS-CoV-2 progress from acute disease onset to death compared with the progression rate associated with two other coronaviruses, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Several research organizations and pharmaceutical industries have attempted to develop successful vaccine candidates for the prevention of COVID-19. However, increasing evidence indicates that the SARS-CoV-2 genome undergoes frequent mutation; thus, an adequate analysis of the viral strain remains necessary to construct effective vaccines. The current study attempted to design a multi-epitope vaccine by utilizing an approach based on the SARS-CoV-2 structural proteins. We predicted the antigenic T- and B-lymphocyte responses to four structural proteins after screening all structural proteins according to specific characteristics. The predicted epitopes were combined using suitable adjuvants and linkers, and a secondary structure profile indicated that the vaccine shared similar properties with the native protein. Importantly, the molecular docking analysis and molecular dynamics simulations revealed that the constructed vaccine possessed a high affinity for toll-like receptor 4 (TLR4). In addition, multiple descriptors were obtained from the simulation trajectories, including the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), solvent-accessible surface area (SASA), and radius of gyration (R g), demonstrating the rigid nature and inflexibility of the vaccine and receptor molecules. In addition, codon optimization, based on Escherichia coli K12, was used to determine the GC content and the codon adaptation index (CAI) value, which further followed for the incorporation into the cloning vector pET28+(a). Collectively, these findings suggested that the constructed vaccine could be used to modulate the immune reaction against SARS-CoV-2.

15.
Molecules ; 25(21)2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33147821

ABSTRACT

With an increasing fatality rate, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has emerged as a promising threat to human health worldwide. Recently, the World Health Organization (WHO) has announced the infectious disease caused by SARS-CoV-2, which is known as coronavirus disease-2019 (COVID-2019), as a global pandemic. Additionally, the positive cases are still following an upward trend worldwide and as a corollary, there is a need for a potential vaccine to impede the progression of the disease. Lately, it has been documented that the nucleocapsid (N) protein of SARS-CoV-2 is responsible for viral replication and interferes with host immune responses. We comparatively analyzed the sequences of N protein of SARS-CoV-2 for the identification of core attributes and analyzed the ancestry through phylogenetic analysis. Subsequently, we predicted the most immunogenic epitope for the T-cell and B-cell. Importantly, our investigation mainly focused on major histocompatibility complex (MHC) class I potential peptides and NTASWFTAL interacted with most human leukocyte antigen (HLA) that are encoded by MHC class I molecules. Further, molecular docking analysis unveiled that NTASWFTAL possessed a greater affinity towards HLA and also available in a greater range of the population. Our study provides a consolidated base for vaccine design and we hope that this computational analysis will pave the way for designing novel vaccine candidates.


Subject(s)
Betacoronavirus/immunology , Nucleocapsid Proteins/immunology , Amino Acid Sequence , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Nucleocapsid Proteins , Drug Hypersensitivity/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I , Humans , Models, Molecular , Molecular Docking Simulation , Nucleocapsid Proteins/chemistry , Peptide Fragments/immunology , Phosphoproteins , Protein Structure, Secondary , SARS-CoV-2 , Viral Vaccines/immunology
16.
Molecules ; 25(17)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872217

ABSTRACT

A pandemic caused by the novel coronavirus (SARS-CoV-2 or COVID-19) began in December 2019 in Wuhan, China, and the number of newly reported cases continues to increase. More than 19.7 million cases have been reported globally and about 728,000 have died as of this writing (10 August 2020). Recently, it has been confirmed that the SARS-CoV-2 main protease (Mpro) enzyme is responsible not only for viral reproduction but also impedes host immune responses. The Mpro provides a highly favorable pharmacological target for the discovery and design of inhibitors. Currently, no specific therapies are available, and investigations into the treatment of COVID-19 are lacking. Therefore, herein, we analyzed the bioactive phytocompounds isolated by gas chromatography-mass spectroscopy (GC-MS) from Tinospora crispa as potential COVID-19 Mpro inhibitors, using molecular docking study. Our analyses unveiled that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules, with three of them exerting biological activity and warranting further optimization and drug development to combat COVID-19.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/chemistry , Phytochemicals/chemistry , Protease Inhibitors/chemistry , Tinospora/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , COVID-19 , Catalytic Domain , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Drug Discovery , Gas Chromatography-Mass Spectrometry , Gene Expression , Humans , Kinetics , Molecular Docking Simulation , Pandemics , Phytochemicals/classification , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Pneumonia, Viral/drug therapy , Protease Inhibitors/classification , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , SARS-CoV-2 , Substrate Specificity , Thermodynamics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
17.
Comput Biol Med ; 124: 103967, 2020 09.
Article in English | MEDLINE | ID: mdl-32828069

ABSTRACT

AIMS: With a large number of fatalities, coronavirus disease-2019 (COVID-19) has greatly affected human health worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes COVID-19. The World Health Organization has declared a global pandemic of this contagious disease. Researchers across the world are collaborating in a quest for remedies to combat this deadly virus. It has recently been demonstrated that the spike glycoprotein (SGP) of SARS-CoV-2 is the mediator by which the virus enters host cells. MAIN METHODS: Our group comprehensibly analyzed the SGP of SARS-CoV-2 through multiple sequence analysis and a phylogenetic analysis. We predicted the strongest immunogenic epitopes of the SGP for both B cells and T cells. KEY FINDINGS: We focused on predicting peptides that would bind major histocompatibility complex class I. Two optimal epitopes were identified, WTAGAAAYY and GAAAYYVGY. They interact with the HLA-B*15:01 allele, which was further validated by molecular docking simulation. This study also found that the selected epitopes are able to be recognized in a large percentage of the world's population. Furthermore, we predicted CD4+ T-cell epitopes and B-cell epitopes. SIGNIFICANCE: Our study provides a strong basis for designing vaccine candidates against SARS-CoV-2. However, laboratory work is required to validate our theoretical results, which would lay the foundation for the appropriate vaccine manufacturing and testing processes.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Amino Acid Sequence , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Computational Biology , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Drug Design , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , HLA-B15 Antigen/chemistry , HLA-B15 Antigen/metabolism , HLA-DRB1 Chains/chemistry , HLA-DRB1 Chains/metabolism , Humans , Molecular Docking Simulation , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , SARS-CoV-2 , Viral Vaccines/chemistry , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...