Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 14-20, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836687

ABSTRACT

Colorectal cancer (CRC) poses a significant global health challenge with high morbidity and mortality rates. This study investigates the role of LY6G6D, a member of the LY6/uPAR superfamily, in CRC. Employing a bioinformatic approach, we analyzed LY6G6D expression across different cancer types, compared it with known oncogenes in CRC, explored the involved genomic alterations, and assessed associated clinicopathological characteristics. LY6G6D exhibited aberrant expression, particularly elevated in CRC adenocarcinoma and highly specific to tumor tissues when compared with other oncogenes, despite its comparatively low frequency of genomic alteration. Subsequently, tumor immune infiltration analysis revealed distinct associations, primarily indicating a negative correlation, suggesting immune down-regulation. Survival analysis in context of LY6G6D was conducted with Kaplan-Meier (KM) curves, indicating a 10% risk of disease recurrence in the case of elevated expression. Additionally, we constructed a 3D protein model of LY6G6D through ab-inito approach. The protein model was validated, followed by conservation analysis and active site identification. Active site identification of LY6G6D's final predicted model revealed some similar sites that were estimated to be conserved. Target-guided drug molecules were collected and molecular docking was executed, proposing Cardigin (Digitoxin) and Manzamine A as potential therapeutic candidates. In conclusion, LY6G6D emerges as a significant biomarker for diagnostic and therapeutic applications in CRC, highlighting its multifaceted role in tumorigenesis. The proposed drugs present avenues for further investigations.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Molecular Docking Simulation , Antigens, Ly/metabolism , Antigens, Ly/genetics , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics
2.
Zool Res ; 44(3): 663-674, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37161653

ABSTRACT

The biological function of the novel zinc-finger SWIM domain-containing protein family (ZSWIM) during embryonic development remains elusive. Here, we conducted a genome-wide analysis to explore the evolutionary processes of the ZSWIM gene family members in mice, Xenopus tropicalis, zebrafish, and humans. We identified nine putative ZSWIM genes in the human and mouse genome, eight in the Xenopus genome, and five in the zebrafish genome. Based on multiple sequence alignment, three members, ZSWIM5, ZSWIM6, and ZSWIM8, demonstrated the highest homology across all four species. Using available RNA sequencing (RNA-seq) data, ZSWIM genes were found to be widely expressed across different tissues, with distinct tissue-specific properties. To identify the functions of the ZSWIM protein family during embryogenesis, we examined temporal and spatial expression patterns of zswim family genes in Xenopus embryos. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that each member had a distinct expression profile. Whole-mount in situ hybridization showed that both zswim1 and zswim3 were maternally expressed genes; zswim5 and zswim6 were expressed throughout embryogenesis and displayed dynamic expression in the brain, eyes, somite, and bronchial arch at the late tailbud stages; zswim7 was detected in the eye area; zswim8 showed a dynamic expression pattern during the tailbud stages, with expression detected in the brain, eyes, and somite; zswim9 was faintly expressed throughout embryonic development. This study provides a foundation for future research to delineate the functions of ZSWIM gene members.


Subject(s)
Biological Evolution , Zebrafish , Female , Pregnancy , Humans , Animals , Mice , Zebrafish/genetics , Xenopus/genetics , Brain , Zinc Fingers/genetics , DNA-Binding Proteins
3.
Pathogens ; 11(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365003

ABSTRACT

Rice (Oryza sativa L.) is a major cereal and staple food crop worldwide, and its growth and production are affected by several fungal and bacterial phytopathogens. Bacterial blight (BB) is one of the world's most devastating rice diseases, caused by Xanthomonas oryzae pv. oryzae (Xoo). In the current study, Bacillus atrophaeus FA12 and B. cabrialesii FA26 were isolated from the rice rhizosphere and characterized as having broad-range antifungal and antibacterial activities against various phytopathogens, including Xoo. In addition, the selected strains were further evaluated for their potent rice growth promotion and suppression efficacy against BB under greenhouse conditions. The result shows that FA12 and FA26, applied as seed inoculants, significantly enhanced the vigor index of rice seedlings by 78.89% and 108.70%, respectively. Suppression efficacy against BB disease by FA12 and FA26 reached up to 59.74% and 54.70%, respectively, in pot experiments. Furthermore, MALDI-TOF MS analysis of selected strains revealed the masses ranged from m/z 1040 to 1540, representing that iturins and fengycin are the major antimicrobial compounds in the crude extracts, which might have beneficial roles in rice defence responses against BB. In conclusion, FA12 and FA26 possess broad-range antagonistic activity and have the capability to promote plant growth traits. More importantly, applying these strains has a high potential for implementing eco-friendly, cost-effective, and sustainable management practices for BB disease.

4.
Mol Cell Biochem ; 443(1-2): 193-204, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29188535

ABSTRACT

c-Myc is a highly pleiotropic transcription factor known to control cell cycle progression, apoptosis, and cellular transformation. Normally, ectopic expression of c-Myc is associated with promoting cell proliferation or triggering cell death via activating p53. However, it is not clear how the levels of c-Myc lead to different cellular responses. Here, we generated a series of stable RPE cell clones expressing c-Myc at different levels, and found that consistent low level of c-Myc induced cellular senescence by activating AP4 in post-confluent RPE cells, while the cells underwent cell death at high level of c-Myc. In addition, high level of c-Myc could override the effect of AP4 on cellular senescence. Further knockdown of AP4 abrogated senescence-like phenotype in cells expressing low level of c-Myc, and accelerated cell death in cells with medium level of c-Myc, indicating that AP4 was required for cellular senescence induced by low level of c-Myc.


Subject(s)
Cellular Senescence , Epithelial Cells/metabolism , Gene Expression Regulation , Proto-Oncogene Proteins c-myc/biosynthesis , Retinal Pigment Epithelium/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Line, Transformed , DNA-Binding Proteins , Epithelial Cells/cytology , Humans , Proto-Oncogene Proteins c-myc/genetics , RNA-Binding Proteins , Retinal Pigment Epithelium/cytology , Time Factors
5.
Biometals ; 30(1): 97-111, 2017 02.
Article in English | MEDLINE | ID: mdl-28091954

ABSTRACT

Recent results discovered the protective roles of methane (CH4) against oxidative stress in animals. However, the possible physiological roles of CH4 in plants are still unknown. By using physiological, histochemical and molecular approaches, the beneficial role of CH4 in germinating alfalfa seeds upon copper (Cu) stress was evaluated. Endogenous production of CH4 was significantly increased in Cu-stressed alfalfa seeds, which was mimicked by 0.39 mM CH4. The pretreatment with CH4 significantly alleviated the inhibition of seed germination and seedling growth induced by Cu stress. Cu accumulation was obviously blocked as well. Meanwhile, α/ß amylase activities and sugar contents were increased, all of which were consistent with the alleviation of seed germination inhibition triggered by CH4. The Cu-triggered oxidative stress was also mitigated, which was confirmed by the decrease of lipid peroxidation and reduction of Cu-induced loss of plasma membrane integrity in CH4-pretreated alfalfa seedlings. The results of antioxidant enzymes, including ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (POD) total or isozymatic activities, and corresponding transcripts (APX1/2, Cu/Zn SOD and Mn-SOD), indicated that CH4 reestablished cellular redox homeostasis. Further, Cu-induced proline accumulation was partly impaired by CH4, which was supported by the alternation of proline metabolism. Together, these results indicated that CH4 performs an advantageous effect on the alleviation of seed germination inhibition caused by Cu stress, and reestablishment of redox homeostasis mainly via increasing antioxidant defence.


Subject(s)
Germination/drug effects , Methane/pharmacology , Oxidative Stress/drug effects , Seeds/drug effects , Antioxidants/chemistry , Antioxidants/metabolism , Copper/chemistry , Copper/toxicity , Hydrogen Peroxide/chemistry , Lipid Peroxidation/drug effects , Medicago sativa/genetics , Medicago sativa/growth & development , Methane/chemistry , Plant Roots/drug effects , Plant Roots/growth & development , Seedlings/drug effects , Seeds/genetics , Seeds/growth & development
6.
Mol Biol Rep ; 41(6): 4109-21, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24562628

ABSTRACT

Heme oxygenase1 (HO1) is involved in protecting plants from environmental stimuli. In this study, a sunflower (Helianthus annuus L.) HO1 gene (HaHO1) was cloned and sequenced. It was confirmed that HaHO1 encodes a precursor protein of 32.93 kDa with an N-terminal plastid transit peptide which was validated by subcellular localization. The amino acid sequence of HaHO1 shared high homology with other plant HO1s. The predicted three-dimensional structure showed a high degree of structural conservation as compared to the known HO1 crystal structures. Phylogenetic analysis revealed that HaHO1 clearly grouped with the plant HO1-like sequences. Moreover, the purified recombinant mature HaHO1 expressed in Escherichia coli exhibits HO activity. Thus, it was concluded that HaHO1 encodes a functional HO1 in sunflower. Additionally, HaHO1 gene was ubiquitously expressed in all tested tissues, and induced differentially during different growth stages after germination, and could be differentially induced by several stresses and hemin treatment. For example, a pretreatment with a low concentration of NaCl (25 mM) could lead to the induction of HaHO1 gene expression and thereafter a salinity acclamatory response. Above cytoprotective effect could be impaired by the potent HO1 inhibitor zinc protoporphyrin IX (ZnPPIX), which was further rescued by the addition of 50% carbon monoxide aqueous solution (in particular) or bilirubin, two catalytic by-products of HO1, respectively. Similarly, a HO1 inducer, hemin, could mimic the salinity acclamatory response. Together, these findings strongly suggested that the up-regulation of HaHO1 might be required for the observed salinity acclimation in sunflower plants.


Subject(s)
Helianthus/enzymology , Heme Oxygenase-1/chemistry , Heme Oxygenase-1/genetics , Phylogeny , Acclimatization , Cloning, Molecular , Crystallography, X-Ray , Gene Expression Regulation, Plant , Heme Oxygenase-1/biosynthesis , Hemin/chemistry , Hemin/genetics , Plant Roots/chemistry , Plant Roots/metabolism , Salinity , Sodium Chloride/metabolism
7.
J Plant Physiol ; 171(2): 53-62, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24331419

ABSTRACT

Hydrogen sulfide (H2S) is considered as a cellular signaling intermediate in higher plants, but corresponding molecular mechanisms and signal transduction pathways in plant biology are still limited. In the present study, a combination of pharmacological and biochemical approaches was used to study the effect of H2S on the alleviation of GA-induced programmed cell death (PCD) in wheat aleurone cells. The results showed that in contrast with the responses of ABA, GA brought about a gradual decrease of l-cysteine desulfhydrase (LCD) activity and H2S production, and thereafter PCD occurred. Exogenous H2S donor sodium hydrosulfide (NaHS) not only effectively blocked the decrease of endogenous H2S release, but also alleviated GA-triggered PCD in wheat aleurone cells. These responses were sensitive to hypotaurine (HT), a H2S scavenger, suggesting that this effect of NaHS was in an H2S-dependent fashion. Further experiment confirmed that H2S, rather than other sodium- or sulphur-containing compounds derived from the decomposing of NaHS, was attributed to the rescuing response. Importantly, the reversing effect was associated with glutathione (GSH) because the NaHS triggered increases of endogenous GSH content and the ratio of GSH/oxidized GSH (GSSG) in GA-treated layers, and the NaHS-mediated alleviation of PCD was markedly eliminated by l-buthionine-sulfoximine (BSO, a selective inhibitor of GSH biosynthesis). The inducible effect of NaHS was also ascribed to the modulation of heme oxygenase-1 (HO-1), because the specific inhibitor of HO-1 zinc protoporphyrin IX (ZnPP) significantly suppressed the NaHS-related responses. By contrast, the above inhibitory effects were reversed partially when carbon monoxide (CO) aqueous solution or bilirubin (BR), two of the by-products of HO-1, was added, respectively. NaHS-triggered HO-1 gene expression in GA-treated layers was also confirmed. Together, the above results clearly suggested that the H2S-delayed PCD in GA-treated wheat aleurone cells was associated with the modulation of GSH homeostasis and HO-1 gene expression.


Subject(s)
Gibberellins/physiology , Glutathione/metabolism , Heme Oxygenase-1/biosynthesis , Hydrogen Sulfide/metabolism , Triticum/metabolism , Abscisic Acid/physiology , Cell Death , Cystathionine gamma-Lyase/metabolism , Heme Oxygenase-1/genetics , Homeostasis , Seeds/cytology , Sulfides , Triticum/cytology
8.
Plant Mol Biol ; 85(1-2): 49-61, 2014 May.
Article in English | MEDLINE | ID: mdl-24366686

ABSTRACT

Haem oxygenase-1 (HO-1) and hydrogen peroxide (H2O2) are two key downstream signals of auxin, a well-known phytohormone regulating plant growth and development. However, the inter-relationship between HO-1 and H2O2 in auxin-mediated lateral root (LR) formation is poorly understood. Herein, we revealed that exogenous auxin, 1-naphthylacetic acid (NAA), could simultaneously stimulate Arabidopsis HO-1 (HY1) gene expression and H2O2 generation. Subsequently, LR formation was induced. NAA-induced HY1 expression is dependent on H2O2. This conclusion was supported by analyzing the removal of H2O2 with ascorbic acid (AsA) and dimethylthiourea (DMTU), both of which could block NAA-induced HY1 expression and LR formation. H2O2-induced LR formation was inhibited by an HO-1 inhibitor zinc protoporphyrin IX (Znpp) in wild-type and severely impaired in HY1 mutant hy1-100. Simultaneously, HY1 is required for NAA-mediated H2O2 generation, since Znpp inhibition of HY1 blocked the NAA-induced H2O2 production and LR formation. Genetic data demonstrated that hy1-100 was significantly impaired in H2O2 production and LR formation in response to NAA, compared with wild-type plants. The addition of carbon monoxide-releasing molecule-2 (CORM-2), the carbon monoxide (CO) donor, induced H2O2 production and LR formation, both of which were decreased by DMTU. Moreover, H2O2 and CORM-2 mimicked the NAA responses in the regulation of cell cycle genes expression, all of which were blocked by Znpp or DMTU, respectively, confirming that both H2O2 and CO were important in the early LR initiation. In summary, our pharmacological, genetic and molecular evidence demonstrated a close inter-relationship between HY1 and H2O2 existing in auxin-induced LR formation in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Hydrogen Peroxide/metabolism , Plant Roots/growth & development , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
9.
Biometals ; 26(3): 403-13, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23547009

ABSTRACT

A reliable result obtained by qRT-PCR highly depends on accurate transcript normalization using stably expressed reference genes. However, the transcript levels of traditional reference genes are not always stable. Also, the inaccurate normalization could easily lead to the false conclusions. In this report, by using geNorm and NormFinder algorithms, 12 candidate reference genes were evaluated in Arabidopsis under iron deficiency. Our results revealed that three novel reference genes (SAND, YLS8 and TIP41-like) were identified and validated as suitable reference genes for qRT-PCR normalization in both iron deprivation (the addition of Ferrozine to the medium) and starvation (withdrawal of iron from the medium) conditions. This conclusion was also confirmed by publicly available microarray data. In addition, when using SAND, YLS8 and TIP41-like as multiple reference genes, the expression patterns of FIT1 and IRT1, two iron deficiency marker genes, were approximately similar with that reported previously. However, a weaker inducible response was obtained from qRT-PCR by normalizating EF-1α alone. Together, we proposed that the combination of SAND, YLS8 and TIP41-like can be used for accurate normalization of gene expression in iron deficiency research. These results provide a valuable evidence for the importance of adequate reference genes in qRT-PCR normalization, insisting on the use of appropriate reference gene validation in all transcriptional analyses.


Subject(s)
Arabidopsis/genetics , Genes, Plant/genetics , Iron Deficiencies , Gene Expression Profiling , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...