Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 8(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674483

ABSTRACT

Biocrusts are associations of various prokaryotic and eukaryotic microorganisms in the top millimeters of soil, which can be found in every climate zone on Earth. They stabilize soils and introduce carbon and nitrogen into this compartment. The worldwide occurrence of biocrusts was proven by numerous studies in Europe, Africa, Asia and North America, leaving South America understudied. Using an integrative approach, which combines morphological and molecular characters (small subunit rRNA and ITS region), we examined the diversity of key biocrust photosynthetic organisms at four sites along the latitudinal climate gradient in Chile. The most northern study site was located in the Atacama Desert (arid climate), followed by open shrubland (semiarid climate), a dry forest region (Mediterranean climate) and a mixed broad leaved-coniferous forest (temperate climate) in the south. The lowest species richness was recorded in the desert (18 species), whereas the highest species richness was observed in the Mediterranean zone with (40 species). Desert biocrusts were composed exclusively of single-celled Chlorophyta algae, followed by cyanobacteria. Chlorophyta, Streptophyta and cyanobacteria dominated semiarid biocrusts, whereas Mediterranean and temperate Chilean biocrusts were composed mostly of Chlorophyta, Streptophyta and Ochrophyta. Our investigation of Chilean biocrust suggests high biodiversity of South American biocrust phototrophs.

2.
Geobiology ; 18(1): 113-124, 2020 01.
Article in English | MEDLINE | ID: mdl-31721410

ABSTRACT

The Atacama Desert is the driest non-polar desert on Earth, presenting precarious conditions for biological activity. In the arid coastal belt, life is restricted to areas with fog events that cause almost daily wet-dry cycles. In such an area, we discovered a hitherto unknown and unique ground covering biocenosis dominated by lichens, fungi, and algae attached to grit-sized (~6 mm) quartz and granitoid stones. Comparable biocenosis forming a kind of a layer on top of soil and rock surfaces in general is summarized as cryptogamic ground covers (CGC) in literature. In contrast to known CGC from arid environments to which frequent cyclic wetting events are lethal, in the Atacama Desert every fog event is answered by photosynthetic activity of the soil community and thus considered as the desert's breath. Photosynthesis of the new CGC type is activated by the lowest amount of water known for such a community worldwide thus enabling the unique biocenosis to fulfill a variety of ecosystem services. In a considerable portion of the coastal Atacama Desert, it protects the soil from sporadically occurring splash erosion and contributes to the accumulation of soil carbon and nitrogen as well as soil formation through bio-weathering. The structure and function of the new CGC type are discussed, and we suggest the name grit-crust. We conclude that this type of CGC can be expected in all non-polar fog deserts of the world and may resemble the cryptogam communities that shaped ancient Earth. It may thus represent a relevant player in current and ancient biogeochemical cycling.


Subject(s)
Lichens , Soil , Desert Climate , Ecosystem , Soil Microbiology
3.
Phytotaxa ; 400(3): 165-179, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-31501642

ABSTRACT

Representatives of the Gomontiellaceae (Oscillatoriales) are rare and hence unstudied cyanobacteria with unusual morphology, distributed in terrestrial and aquatic habitats all over the world. Investigation of the group based on an integrative approach is only beginning, and to understand the actual biodiversity and ecology, a greater number of cultivated strains is necessary. However, some ecological traits of these cyanobacteria (e.g. low population densities, the absence of conspicuous growth in nature) led to methodological difficulties during isolation in culture. One species in the family Gomontiellaceae, Crinalium magnum Fritsch et John, is characterized by prominent wide and flattened trichomes, and represented by the non-authentic strain SAG 34.87. Detailed previous investigation of this strain clearly showed its morphological discrepancy with the original description of C. magnum and the genus Crinalium in general. The new isolate from maritime sand dunes of the Baltic Sea coast (Germany), however, revealed morphological characters completely corresponding with the diagnosis of C. magnum. Phylogenetic analysis based on 16S rRNA sequences indicated a position of the new strain inside Gomontiellaceae. Both morphology and ultrastructure of the strain are congruous with characters of the family. Epitypification and emendation of C. magnum are proposed since the ecology and habitat of the original strain are congruent with the type locality of this rare species (sand, Irish Sea coast, North Wales, UK). We expanded the description of C. magnum by details of the filament development and specified dimensional ranges for trichomes and cells, as well as by new data about the transversely striated structure of mucilaginous sheath.

4.
Mol Phylogenet Evol ; 133: 236-255, 2019 04.
Article in English | MEDLINE | ID: mdl-30576758

ABSTRACT

Seven new species and two varieties of Klebsormidium were described using an integrative approach on the base of 28 strains from the poorly studied phylogenetic superclade G. These strains originated from the unusual and exotic habitats (semi-deserts, semi-arid shrublands, Mediterranean shrub and deciduous vegetation, temperate Araucaria forests, peat bogs, dumps after coal mining, maritime sand dunes etc.) of four continents (Africa, South and North America, and Europe). Molecular phylogenies based on ITS-1,2, rbcL gene and concatenated dataset of ITS-1,2-rbcL, secondary structure of ITS-2, morphology, ecology and biogeography, micrographs and drawings of the investigated strains were assessed. Additionally, phylogeny and morphology of 18 Klebsormidium strains from other lineages isolated from the same localities (different vegetation types of Chile and maritime sand dunes of Germany) were investigated for the comparison with representatives of clade G. Clade G Klebsormidium is characterized by distant phylogenetic position from the other Klebsormidium lineages and prominent morphology: four-lobed chloroplasts and mostly short swollen cells in young culture, compact small pyrenoids, curved or disintegrated filaments, unusual elongation of cells in old culture, formation of specific cluster- and knot-like colonies on agar surface, especially prominent in strains isolated from desert regions, from which the group probably originated. Comparison of Klebsormidium diversity from different biogeographic regions showed that the representatives of clade G are common algae in regions of the southern hemisphere (South Africa and Chile) and rare representatives in terrestrial ecosystems of the northern hemisphere. Further investigation of mostly unstudied territories of the southern hemisphere could bring many surprises and discoveries, leading to a change of the present concept that Klebsormidium is cosmopolitan in distribution.


Subject(s)
Biodiversity , Phylogeny , Soil , Streptophyta/classification , Chloroplasts , DNA, Intergenic/genetics , Forests , Geography , Nucleic Acid Conformation
5.
Mol Ecol Resour ; 18(2): 229-239, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29058814

ABSTRACT

We describe the performance of a new metabarcoding approach to investigate the environmental diversity of a prominent group of widespread unicellular organisms, the Cercozoa. Cercozoa is an immensely large group of protists, and although it may dominate in soil and aquatic ecosystems, its environmental diversity remains undersampled. We designed PCR primers targeting the hypervariable region V4 of the small subunit ribosomal RNA (SSU or 18S) gene, which is the recommended barcode marker for Cercozoa. The length of the amplified fragment (c. 350 bp) is suitable for Illumina MiSeq, the most cost-effective platform for molecular environmental surveys. We provide barcoded primers, an economical alternative to multiple libraries for multiplex sequencing of over a hundred samples. In silico, our primers matched 68% of the cercozoan sequences of the reference database and performed better than previously proposed new-generation sequencing primers. In mountain grassland soils and in biological soil crusts from a variety of climatic regions, we were able to detect cercozoan sequences encompassing nearly the whole range of the phylum. We obtained 901 operational taxonomic units (OTUs) at 97% similarity threshold from 26 samples, with c. 50,000 sequences per site, and only 8% of noncercozoan sequences. We could report a further increase in the diversity of Cercozoa, as only 43% of the OTUs were 97%-100% similar to any known sequence. Our study thus provides an advanced tool for cercozoan metabarcoding and to investigate their diversity and distribution in the environment.


Subject(s)
Cercozoa/classification , Cercozoa/genetics , DNA Barcoding, Taxonomic/methods , DNA Primers/genetics , Genetic Variation , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Environmental Microbiology , Phylogeny , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...