Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Xenobiotica ; 54(2): 64-74, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38197324

ABSTRACT

Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults. Available treatments have not markedly improved patient survival in the last twenty years. However, genomic investigations have showed that the PI3K pathway is frequently altered in this glioma, making it a potential therapeutic target.Paxalisib is a brain penetrant PI3K/mTOR inhibitor (mouse Kp,uu 0.31) specifically developed for the treatment of GBM. We characterised the preclinical pharmacokinetics and efficacy of paxalisib and predicted its pharmacokinetics and efficacious dose in humans.Plasma protein binding of paxalisib was low, with the fraction unbound ranging from 0.25 to 0.43 across species. The hepatic clearance of paxalisib was predicted to be low in mice, rats, dogs and humans, and high in monkeys, from hepatocytes incubations. The plasma clearance was low in mice, moderate in rats and high in dogs and monkeys. Oral bioavailability ranged from 6% in monkeys to 76% in rats.The parameters estimated from the pharmacokinetic/pharmacodynamic modelling of the efficacy in the subcutaneous U87 xenograft model combined with the human pharmacokinetics profile predicted by PBPK modelling suggested that a dose of 56 mg may be efficacious in humans. Paxalisib is currently tested in Phase III clinical trials.


Subject(s)
Phosphatidylinositol 3-Kinases , Protein Kinase Inhibitors , Humans , Rats , Mice , Animals , Dogs , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Phosphoinositide-3 Kinase Inhibitors/metabolism , Brain/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
Am J Hematol ; 98(3): 449-463, 2023 03.
Article in English | MEDLINE | ID: mdl-36594167

ABSTRACT

The treatment of patients with relapsed or refractory lymphoid neoplasms represents a significant clinical challenge. Here, we identify the pro-survival BCL-2 protein family member MCL-1 as a resistance factor for the BCL-2 inhibitor venetoclax in non-Hodgkin lymphoma (NHL) cell lines and primary NHL samples. Mechanistically, we show that the antibody-drug conjugate polatuzumab vedotin promotes MCL-1 degradation via the ubiquitin/proteasome system. This targeted MCL-1 antagonism, when combined with venetoclax and the anti-CD20 antibodies obinutuzumab or rituximab, results in tumor regressions in preclinical NHL models, which are sustained even off-treatment. In a Phase Ib clinical trial (NCT02611323) of heavily pre-treated patients with relapsed or refractory NHL, 25/33 (76%) patients with follicular lymphoma and 5/17 (29%) patients with diffuse large B-cell lymphoma achieved complete or partial responses with an acceptable safety profile when treated with the recommended Phase II dose of polatuzumab vedotin in combination with venetoclax and an anti-CD20 antibody.


Subject(s)
Immunoconjugates , Lymphoma, Non-Hodgkin , Humans , Myeloid Cell Leukemia Sequence 1 Protein/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Lymphoma, Non-Hodgkin/drug therapy , Lymphoma, Non-Hodgkin/pathology , Rituximab/therapeutic use , Immunoconjugates/therapeutic use
3.
J Med Chem ; 65(24): 16589-16621, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36455032

ABSTRACT

Small molecule inhibitors that target the phosphatidylinositol 3-kinase (PI3K) signaling pathway have received significant interest for the treatment of cancers. The class I isoform PI3Kα is most commonly associated with solid tumors via gene amplification or activating mutations. However, inhibitors demonstrating both PI3K isoform and mutant specificity have remained elusive. Herein, we describe the optimization and characterization of a series of benzoxazepin-oxazolidinone ATP-competitive inhibitors of PI3Kα which also induce the selective degradation of the mutant p110α protein, the catalytic subunit of PI3Kα. Structure-based design informed isoform-specific interactions within the binding site, leading to potent inhibitors with greater than 300-fold selectivity over the other Class I PI3K isoforms. Further optimization of pharmacokinetic properties led to excellent in vivo exposure and efficacy and the identification of clinical candidate GDC-0077 (inavolisib, 32), which is now under evaluation in a Phase III clinical trial as a treatment for patients with PIK3CA-mutant breast cancer.


Subject(s)
Breast Neoplasms , Phosphatidylinositol 3-Kinases , Humans , Female , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , Mutation
4.
Nat Commun ; 13(1): 2057, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440108

ABSTRACT

The AKT kinases have emerged as promising therapeutic targets in oncology and both allosteric and ATP-competitive AKT inhibitors have entered clinical investigation. However, long-term efficacy of such inhibitors will likely be challenged by the development of resistance. We have established prostate cancer models of acquired resistance to the allosteric inhibitor MK-2206 or the ATP-competitive inhibitor ipatasertib following prolonged exposure. While alterations in AKT are associated with acquired resistance to MK-2206, ipatasertib resistance is driven by rewired compensatory activity of parallel signaling pathways. Importantly, MK-2206 resistance can be overcome by treatment with ipatasertib, while ipatasertib resistance can be reversed by co-treatment with inhibitors of pathways including PIM signaling. These findings demonstrate that distinct resistance mechanisms arise to the two classes of AKT inhibitors and that combination approaches may reverse resistance to ATP-competitive inhibition.


Subject(s)
Antineoplastic Agents , Proto-Oncogene Proteins c-akt , Adenosine Triphosphate/pharmacology , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Humans , Male , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
5.
Bioorg Med Chem Lett ; 59: 128576, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35065235

ABSTRACT

Structure-based design was utilized to optimize 6,6-diaryl substituted dihydropyrone and hydroxylactam to obtain inhibitors of lactate dehydrogenase (LDH) with low nanomolar biochemical and single-digit micromolar cellular potencies. Surprisingly the replacement of a phenyl with a pyridyl moiety in the chemical structure revealed a new binding mode for the inhibitors with subtle conformational change of the LDHA active site. This led to the identification of a potent, cell-active hydroxylactam inhibitor exhibiting an in vivo pharmacokinetic profile suitable for mouse tumor xenograft study.


Subject(s)
Enzyme Inhibitors/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , Lactams/pharmacology , Animals , Cell Line , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , L-Lactate Dehydrogenase/metabolism , Lactams/chemistry , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Structure-Activity Relationship
6.
Cancer Discov ; 12(1): 204-219, 2022 01.
Article in English | MEDLINE | ID: mdl-34544753

ABSTRACT

PIK3CA is one of the most frequently mutated oncogenes; the p110a protein it encodes plays a central role in tumor cell proliferation. Small-molecule inhibitors targeting the PI3K p110a catalytic subunit have entered clinical trials, with early-phase GDC-0077 studies showing antitumor activity and a manageable safety profile in patients with PIK3CA-mutant breast cancer. However, preclinical studies have shown that PI3K pathway inhibition releases negative feedback and activates receptor tyrosine kinase signaling, reengaging the pathway and attenuating drug activity. Here we discover that GDC-0077 and taselisib more potently inhibit mutant PI3K pathway signaling and cell viability through unique HER2-dependent mutant p110a degradation. Both are more effective than other PI3K inhibitors at maintaining prolonged pathway suppression. This study establishes a new strategy for identifying inhibitors that specifically target mutant tumors by selective degradation of the mutant oncoprotein and provide a strong rationale for pursuing PI3Kα degraders in patients with HER2-positive breast cancer. SIGNIFICANCE: The PI3K inhibitors GDC-0077 and taselisib have a unique mechanism of action; both inhibitors lead to degradation of mutant p110a protein. The inhibitors that have the ability to trigger specific degradation of mutant p110a without significant change in wild-type p110a protein may result in improved therapeutic index in PIK3CA-mutant tumors.See related commentary by Vanhaesebroeck et al., p. 20.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Class I Phosphatidylinositol 3-Kinases , Imidazoles , Oxazepines , Phosphoinositide-3 Kinase Inhibitors , Receptor, ErbB-2 , Female , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor/drug effects , Class I Phosphatidylinositol 3-Kinases/genetics , Imidazoles/pharmacology , Imidazoles/therapeutic use , Oxazepines/pharmacology , Oxazepines/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Receptor, ErbB-2/genetics
7.
Bioorg Med Chem Lett ; 50: 128335, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34425201

ABSTRACT

Fulvestrant is an FDA-approved drug with a dual mechanism of action (MOA), acting as a full antagonist and degrader of the estrogen receptor protein. A significant limitation of fulvestrant is the dosing regimen required for efficacy. Due to its high lipophilicity and poor pharmacokinetic profile, fulvestrant needs to be administered through intramuscular injections which leads to injection site soreness. This route of administration also limits the dose and target occupancy in patients. We envisioned a best-in-class molecule that would function with the same dual MOA as fulvestrant, but with improved physicochemical properties and would be orally bioavailable. Herein we report our progress toward that goal, resulting in a new lead GNE-502 which addressed some of the liabilities of our previously reported lead molecule GNE-149.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Breast Neoplasms/drug therapy , Drug Discovery , Receptors, Estrogen/metabolism , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , Female , Humans , MCF-7 Cells , Mice , Molecular Structure , Protein Conformation , Xenograft Model Antitumor Assays
8.
J Med Chem ; 64(16): 11841-11856, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34251202

ABSTRACT

Breast cancer remains a leading cause of cancer death in women, representing a significant unmet medical need. Here, we disclose our discovery efforts culminating in a clinical candidate, 35 (GDC-9545 or giredestrant). 35 is an efficient and potent selective estrogen receptor degrader (SERD) and a full antagonist, which translates into better antiproliferation activity than known SERDs (1, 6, 7, and 9) across multiple cell lines. Fine-tuning the physiochemical properties enabled once daily oral dosing of 35 in preclinical species and humans. 35 exhibits low drug-drug interaction liability and demonstrates excellent in vitro and in vivo safety profiles. At low doses, 35 induces tumor regressions either as a single agent or in combination with a CDK4/6 inhibitor in an ESR1Y537S mutant PDX or a wild-type ERα tumor model. Currently, 35 is being evaluated in Phase III clinical trials.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Carbolines/therapeutic use , Estrogen Receptor Antagonists/therapeutic use , Estrogen Receptor alpha/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Carbolines/chemistry , Carbolines/pharmacokinetics , Dogs , Estrogen Receptor Antagonists/chemistry , Estrogen Receptor Antagonists/pharmacokinetics , Female , Humans , MCF-7 Cells , Macaca fascicularis , Mice , Molecular Structure , Rats , Structure-Activity Relationship , Xenograft Model Antitumor Assays
9.
Haematologica ; 106(4): 1034-1046, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32414851

ABSTRACT

FLT3 internal tandem duplication (FLT3-ITD) mutations account for ~25% of adult acute myeloid leukemia cases and are associated with poor prognosis. Venetoclax, a selective BCL-2 inhibitor, has limited monotherapy activity in relapsed/refractory acute myeloid leukemia with no responses observed in a small subset of FLT3-ITD+ patients. Further, FLT3-ITD mutations emerged at relapse following venetoclax monotherapy and combination therapy suggesting a potential mechanism of resistance. Therefore, we investigated the convergence of FLT3-ITD signaling on the BCL-2 family proteins and determined combination activity of venetoclax and FLT3-ITD inhibition in preclinical models. In vivo, venetoclax combined with quizartinib, a potent FLT3 inhibitor, showed greater anti-tumor efficacy and prolonged survival compared to monotherapies. In a patient-derived FLT3-ITD+ xenograft model, cotreatment with venetoclax and quizartinib at clinically relevant doses had greater anti-tumor activity in the tumor microenvironment compared to quizartinib or venetoclax alone. Use of selective BCL-2 family inhibitors further identified a role for BCL-2, BCL-XL and MCL-1 in mediating survival in FLT3-ITD+ cells in vivo and highlighted the need to target all three proteins for greatest anti-tumor activity. Assessment of these combinations in vitro revealed synergistic combination activity for quizartinib and venetoclax but not for quizartinib combined with BCL-XL or MCL-1 inhibition. FLT3-ITD inhibition was shown to indirectly target both BCL-XL and MCL-1 through modulation of protein expression, thereby priming cells toward BCL-2 dependence for survival. These data demonstrate that FLT3-ITD inhibition combined with venetoclax has impressive anti-tumor activity in FLT3-ITD+ acute myeloid leukemia preclinical models and provides strong mechanistic rational for clinical studies.


Subject(s)
Leukemia, Myeloid, Acute , Adult , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Protein Kinase Inhibitors , Sulfonamides/pharmacology , Tumor Microenvironment , fms-Like Tyrosine Kinase 3/genetics
10.
Cancer Discov ; 11(1): 68-79, 2021 01.
Article in English | MEDLINE | ID: mdl-32887697

ABSTRACT

The antiapoptotic protein BCL2 plays critical roles in regulating lymphocyte development and immune responses, and has also been implicated in tumorigenesis and tumor survival. However, it is unknown whether BCL2 is critical for antitumor immune responses. We evaluated whether venetoclax, a selective small-molecule inhibitor of BCL2, would influence the antitumor activity of immune checkpoint inhibitors (ICI). We demonstrate in mouse syngeneic tumor models that venetoclax can augment the antitumor efficacy of ICIs accompanied by the increase of PD-1+ T effector memory cells. Venetoclax did not impair human T-cell function in response to antigen stimuli in vitro and did not antagonize T-cell activation induced by anti-PD-1. Furthermore, we demonstrate that the antiapoptotic family member BCL-XL provides a survival advantage in effector T cells following inhibition of BCL2. Taken together, these data provide evidence that venetoclax should be further explored in combination with ICIs for cancer therapy. SIGNIFICANCE: The antiapoptotic oncoprotein BCL2 plays critical roles in tumorigenesis, tumor survival, lymphocyte development, and immune system regulation. Here we demonstrate that venetoclax, the first FDA/European Medicines Agency-approved BCL2 inhibitor, unexpectedly can be combined preclinically with immune checkpoint inhibitors to enhance anticancer immunotherapy, warranting clinical evaluation of these combinations.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Immune Checkpoint Inhibitors , T-Lymphocytes , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Sulfonamides/pharmacology
11.
Cancer Discov ; 11(3): 778-793, 2021 03.
Article in English | MEDLINE | ID: mdl-33208393

ABSTRACT

Hippo pathway dysregulation occurs in multiple cancers through genetic and nongenetic alterations, resulting in translocation of YAP to the nucleus and activation of the TEAD family of transcription factors. Unlike other oncogenic pathways such as RAS, defining tumors that are Hippo pathway-dependent is far more complex due to the lack of hotspot genetic alterations. Here, we developed a machine-learning framework to identify a robust, cancer type-agnostic gene expression signature to quantitate Hippo pathway activity and cross-talk as well as predict YAP/TEAD dependency across cancers. Further, through chemical genetic interaction screens and multiomics analyses, we discover a direct interaction between MAPK signaling and TEAD stability such that knockdown of YAP combined with MEK inhibition results in robust inhibition of tumor cell growth in Hippo dysregulated tumors. This multifaceted approach underscores how computational models combined with experimental studies can inform precision medicine approaches including predictive diagnostics and combination strategies. SIGNIFICANCE: An integrated chemicogenomics strategy was developed to identify a lineage-independent signature for the Hippo pathway in cancers. Evaluating transcriptional profiles using a machine-learning method led to identification of a relationship between YAP/TAZ dependency and MAPK pathway activity. The results help to nominate potential combination therapies with Hippo pathway inhibition.This article is highlighted in the In This Issue feature, p. 521.


Subject(s)
Cheminformatics/methods , Computational Biology/methods , Genomics/methods , Hippo Signaling Pathway , MAP Kinase Signaling System , Machine Learning , Signal Transduction , Humans
12.
ACS Med Chem Lett ; 11(10): 1829-1836, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33062160

ABSTRACT

Herein we describe the discovery of A-1331852, a first-in-class orally active BCL-XL inhibitor that selectively and potently induces apoptosis in BCL-XL-dependent tumor cells. This molecule was generated by re-engineering our previously reported BCL-XL inhibitor A-1155463 using structure-based drug design. Key design elements included rigidification of the A-1155463 pharmacophore and introduction of sp3-rich moieties capable of generating highly productive interactions within the key P4 pocket of BCL-XL. A-1331852 has since been used as a critical tool molecule for further exploring BCL-2 family protein biology, while also representing an attractive entry into a drug discovery program.

13.
ACS Med Chem Lett ; 11(6): 1342-1347, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32551022

ABSTRACT

Estrogen receptor alpha (ERα) is a well-validated drug target for ER-positive (ER+) breast cancer. Fulvestrant is FDA-approved to treat ER+ breast cancer and works through two mechanisms-as a full antagonist and selective estrogen receptor degrader (SERD)-but lacks oral bioavailability. Thus, we envisioned a "best-in-class" molecule with the same dual mechanisms as fulvestrant, but with significant oral exposure. Through lead optimization, we discovered a tool molecule 12 (GNE-149) with improved degradation and antiproliferative activity in both MCF7 and T47D cells. To illustrate the binding mode and key interactions of this scaffold with ERα, we obtained a cocrystal structure of 6 that showed ionic interaction of azetidine with Asp351 residue. Importantly, 12 showed favorable metabolic stability and good oral exposure. 12 exhibited antagonist effect in the uterus and demonstrated robust dose-dependent efficacy in xenograft models.

14.
Leukemia ; 34(8): 2025-2037, 2020 08.
Article in English | MEDLINE | ID: mdl-32066867

ABSTRACT

Despite decades of clinical use, mechanisms of glucocorticoid resistance are poorly understood. We treated primary murine T lineage acute lymphoblastic leukemias (T-ALLs) with the glucocorticoid dexamethasone (DEX) alone and in combination with the pan-PI3 kinase inhibitor GDC-0941 and observed a robust response to DEX that was modestly enhanced by GDC-0941. Continuous in vivo treatment invariably resulted in outgrowth of drug-resistant clones, ~30% of which showed markedly reduced glucocorticoid receptor (GR) protein expression. A similar proportion of relapsed human T-ALLs also exhibited low GR protein levels. De novo or preexisting mutations in the gene encoding GR (Nr3c1) occurred in relapsed clones derived from multiple independent parental leukemias. CRISPR/Cas9 gene editing confirmed that loss of GR expression confers DEX resistance. Exposing drug-sensitive T-ALLs to DEX in vivo altered transcript levels of multiple genes, and this response was attenuated in relapsed T-ALLs. These data implicate reduced GR protein expression as a frequent cause of glucocorticoid resistance in T-ALL.


Subject(s)
Dexamethasone/therapeutic use , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Receptors, Glucocorticoid/analysis , Animals , Dexamethasone/administration & dosage , Drug Resistance, Neoplasm , Humans , Indazoles/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Glucocorticoid/genetics , Recurrence , Sulfonamides/administration & dosage
15.
Bioorg Med Chem Lett ; 30(4): 126907, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31902710

ABSTRACT

Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.


Subject(s)
Antibodies, Monoclonal/immunology , Drug Carriers/chemistry , Estrogen Receptor alpha/immunology , Antibodies, Monoclonal/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , Drug Design , Estrogen Receptor alpha/metabolism , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoconjugates/pharmacology , MCF-7 Cells , Proteolysis/drug effects , Receptor, ErbB-2/metabolism
16.
Haematologica ; 105(3): 697-707, 2020 03.
Article in English | MEDLINE | ID: mdl-31123034

ABSTRACT

The pathogenesis of acute myeloid leukemia (AML) involves serial acquisition of mutations controlling several cellular processes, requiring combination therapies affecting key downstream survival nodes in order to treat the disease effectively. The BCL2 selective inhibitor venetoclax has potent anti-leukemia efficacy; however, resistance can occur due to its inability to inhibit MCL1, which is stabilized by the MAPK pathway. In this study, we aimed to determine the anti-leukemia efficacy of concomitant targeting of the BCL2 and MAPK pathways by venetoclax and the MEK1/2 inhibitor cobimetinib, respectively. The combination demonstrated synergy in seven of 11 AML cell lines, including those resistant to single agents, and showed growth-inhibitory activity in over 60% of primary samples from patients with diverse genetic alterations. The combination markedly impaired leukemia progenitor functions, while maintaining normal progenitors. Mass cytometry data revealed that BCL2 protein is enriched in leukemia stem/progenitor cells, primarily in venetoclax-sensitive samples, and that cobimetinib suppressed cytokine-induced pERK and pS6 signaling pathways. Through proteomic profiling studies, we identified several pathways inhibited downstream of MAPK that contribute to the synergy of the combination. In OCI-AML3 cells, the combination downregulated MCL1 protein levels and disrupted both BCL2:BIM and MCL1:BIM complexes, releasing BIM to induce cell death. RNA sequencing identified several enriched pathways, including MYC, mTORC1, and p53 in cells sensitive to the drug combination. In vivo, the venetoclax-cobimetinib combination reduced leukemia burden in xenograft models using genetically engineered OCI-AML3 and MOLM13 cells. Our data thus provide a rationale for combinatorial blockade of MEK and BCL2 pathways in AML.


Subject(s)
Leukemia, Myeloid, Acute , Proteomics , Apoptosis , Azetidines , Bridged Bicyclo Compounds, Heterocyclic , Cell Line, Tumor , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Piperidines , Proto-Oncogene Proteins c-bcl-2/genetics , Sulfonamides
18.
Neoplasia ; 21(10): 1036-1050, 2019 10.
Article in English | MEDLINE | ID: mdl-31521051

ABSTRACT

Cancer immunotherapies have demonstrated durable responses in a range of different cancers. However, only a subset of patients responds to these therapies. We set out to test if non-invasive imaging of tumor perfusion and vascular inflammation may be able to explain differences in T-cell infiltration in pre-clinical tumor models, relevant for treatment outcomes. Tumor perfusion and vascular cell adhesion molecule (VCAM-1) density were quantified using magnetic resonance imaging (MRI) and correlated with infiltration of adoptively transferred and endogenous T-cells. MRI biomarkers were evaluated for their ability to detect tumor rejection 3 days after T-cell transfer. Baseline levels of these markers were used to assess their ability to predict PD-L1 treatment response. We found correlations between MRI-derived VCAM-1 density and infiltration of endogenous or adoptively transferred T-cells in some preclinical tumor models. Blocking T-cell binding to endothelial cell adhesion molecules (VCAM-1/ICAM) prevented T-cell mediated tumor rejection. Tumor rejection could be detected 3 days after adoptive T-cell transfer prior to tumor volume changes by monitoring the extracellular extravascular volume fraction. Imaging tumor perfusion and VCAM-1 density before treatment initiation was able to predict the response of MC38 tumors to PD-L1 blockade. These results indicate that MRI based assessment of tumor perfusion and VCAM-1 density can inform about the permissibility of the tumor vasculature for T-cell infiltration which may explain some of the observed variance in treatment response for cancer immunotherapies.


Subject(s)
Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/diagnosis , Neoplasms/metabolism , Perfusion Imaging , T-Lymphocytes/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Biomarkers , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Disease Models, Animal , Endothelial Cells/metabolism , Female , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Magnetic Resonance Imaging , Mice , Neoplasms/drug therapy , Neoplasms/immunology , Positron-Emission Tomography , T-Lymphocytes/immunology , T-Lymphocytes/pathology
19.
Cell ; 178(4): 949-963.e18, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31353221

ABSTRACT

Estrogen receptor-positive (ER+) breast cancers frequently remain dependent on ER signaling even after acquiring resistance to endocrine agents, prompting the development of optimized ER antagonists. Fulvestrant is unique among approved ER therapeutics due to its capacity for full ER antagonism, thought to be achieved through ER degradation. The clinical potential of fulvestrant is limited by poor physicochemical features, spurring attempts to generate ER degraders with improved drug-like properties. We show that optimization of ER degradation does not guarantee full ER antagonism in breast cancer cells; ER "degraders" exhibit a spectrum of transcriptional activities and anti-proliferative potential. Mechanistically, we find that fulvestrant-like antagonists suppress ER transcriptional activity not by ER elimination, but by markedly slowing the intra-nuclear mobility of ER. Increased ER turnover occurs as a consequence of ER immobilization. These findings provide proof-of-concept that small molecule perturbation of transcription factor mobility may enable therapeutic targeting of this challenging target class.


Subject(s)
Breast Neoplasms/metabolism , Estrogen Receptor Antagonists/pharmacology , Fulvestrant/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cinnamates/pharmacology , Drug Resistance, Neoplasm , Estrogen Receptor Antagonists/therapeutic use , Female , Fulvestrant/therapeutic use , HEK293 Cells , Heterografts , Humans , Indazoles/pharmacology , Ligands , MCF-7 Cells , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Polymorphism, Single Nucleotide , Proteolysis/drug effects , Signal Transduction/drug effects , Transcription, Genetic/drug effects
20.
PLoS Genet ; 15(6): e1008168, 2019 06.
Article in English | MEDLINE | ID: mdl-31199785

ABSTRACT

The lack of predictive preclinical models is a fundamental barrier to translating knowledge about the molecular pathogenesis of cancer into improved therapies. Insertional mutagenesis (IM) in mice is a robust strategy for generating malignancies that recapitulate the extensive inter- and intra-tumoral genetic heterogeneity found in advanced human cancers. While the central role of "driver" viral insertions in IM models that aberrantly increase the expression of proto-oncogenes or disrupt tumor suppressors has been appreciated for many years, the contributions of cooperating somatic mutations and large chromosomal alterations to tumorigenesis are largely unknown. Integrated genomic studies of T lineage acute lymphoblastic leukemias (T-ALLs) generated by IM in wild-type (WT) and Kras mutant mice reveal frequent point mutations and other recurrent non-insertional genetic alterations that also occur in human T-ALL. These somatic mutations are sensitive and specific markers for defining clonal dynamics and identifying candidate resistance mechanisms in leukemias that relapse after an initial therapeutic response. Primary cancers initiated by IM and resistant clones that emerge during in vivo treatment close key gaps in existing preclinical models, and are robust platforms for investigating the efficacy of new therapies and for elucidating how drug exposure shapes tumor evolution and patterns of resistance.


Subject(s)
Genomics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diet therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Cell Line, Tumor , Chromosome Aberrations , Clonal Evolution/genetics , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Humans , Mice , Mutagenesis, Insertional/genetics , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL