Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 35(17): 2198-2202, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28364931

ABSTRACT

Vaccine cold chain equipment (CCE) in developing countries is often exposed to harsh environmental conditions, such as extreme temperatures and humidity, and is subject to many additional challenges, including intermittent power supply, insufficient maintenance capacity, and a scarcity of replacement parts. Together, these challenges lead to high failure rates for refrigerators, potentially damaging vaccines and adversely affecting immunization coverage. Providing a sustainable solution for improving CCE performance requires an understanding of the root causes of failure. Project teams conducted small-scale studies to determine the root causes of CCE failure in selected locations in Uganda and Mozambique. The evaluations covered 59 failed refrigerators and freezers in Uganda and 27 refrigerators in Mozambique. In Uganda, the vast majority of failures were due to a cooling unit fault in one widely used refrigerator model. In Mozambique, 11 of the 27 problems were attributable to solar refrigerators with batteries that were unable to hold a charge, and another eight problems were associated with a need to adjust thermostat settings. The studies showed that tracking and evaluation of equipment performance and failure can yield important, actionable information for a range of stakeholders, including local CCE technicians, the ministry of health, equipment manufacturers, and international partners such as the United Nations Children's Fund, World Health Organization, and Gavi, the Vaccine Alliance. Collaborative efforts to systematically collect and communicate data on CCE performance and causes of failure will help to improve the efficiency and reach of immunization programs in low- and middle-income countries.


Subject(s)
Drug Storage/methods , Equipment Failure , Refrigeration/instrumentation , Vaccines/supply & distribution , Humans , Immunization Programs , Mozambique , Uganda
2.
Vaccine ; 34(34): 4062-7, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27340098

ABSTRACT

BACKGROUND: Immunization programs in low and middle income countries (LMICs) face numerous challenges in getting life-saving vaccines to the people who need them. As unmanned aerial vehicle (UAV) technology has progressed in recent years, potential use cases for UAVs have proliferated due to their ability to traverse difficult terrains, reduce labor, and replace fleets of vehicles that require costly maintenance. METHODS: Using a HERMES-generated simulation model, we performed sensitivity analyses to assess the impact of using an unmanned aerial system (UAS) for routine vaccine distribution under a range of circumstances reflecting variations in geography, population, road conditions, and vaccine schedules. We also identified the UAV payload and UAS costs necessary for a UAS to be favorable over a traditional multi-tiered land transport system (TMLTS). RESULTS: Implementing the UAS in the baseline scenario improved vaccine availability (96% versus 94%) and produced logistics cost savings of $0.08 per dose administered as compared to the TMLTS. The UAS maintained cost savings in all sensitivity analyses, ranging from $0.05 to $0.21 per dose administered. The minimum UAV payloads necessary to achieve cost savings over the TMLTS, for the various vaccine schedules and UAS costs and lifetimes tested, were substantially smaller (up to 0.40L) than the currently assumed UAV payload of 1.5L. Similarly, the maximum UAS costs that could achieve savings over the TMLTS were greater than the currently assumed costs under realistic flight conditions. CONCLUSION: Implementing a UAS could increase vaccine availability and decrease costs in a wide range of settings and circumstances if the drones are used frequently enough to overcome the capital costs of installing and maintaining the system. Our computational model showed that major drivers of costs savings from using UAS are road speed of traditional land vehicles, the number of people needing to be vaccinated, and the distance that needs to be traveled.


Subject(s)
Delivery of Health Care/economics , Transportation/economics , Transportation/methods , Vaccines/supply & distribution , Aviation , Computer Simulation , Costs and Cost Analysis , Vaccines/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...