Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Philos Ethics Humanit Med ; 17(1): 8, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35414094

ABSTRACT

BACKGROUND: Human brain organoids are a valuable research tool for studying brain development, physiology, and pathology. Yet, a host of potential ethical concerns are inherent in their creation. There is a growing group of bioethicists who acknowledge the moral imperative to develop brain organoid technologies and call for caution in this research. Although a relatively new technology, brain organoids and their uses are already being discussed in media literature. Media literature informs the public and policymakers but has the potential for utopian or dystopian distortions. Thus, it is important to understand how this technology is portrayed to the public. METHODS: To investigate how brain organoids are displayed to the public, we conducted a systematic review of media literature indexed in the Nexis Uni database from 2013-2019. News and media source articles passing exclusion criteria (n = 93) were scored to evaluate tone and relevant themes. Themes were validated with a pilot sample before being applied to the dataset. Thematic analysis assessed article tone, reported potential for the technology, and the scientific, social, and ethical contexts surrounding brain organoids research. RESULTS: Brain organoid publications became more frequent from 2013 to 2019. We observed increases in positively and negatively toned articles, suggesting growing polarization. While many sources discuss realistic applications of brain organoids, others suggest treatment and cures beyond the scope of the current technology. This could work to overhype the technology and disillusion patients and families by offering false hope. In the ethical narrative we observe a preoccupation with issues such as development of artificial consciousness and "humanization" of organoid-animal chimeras. Issues of regulation, ownership, and accuracy of the organoid models are rarely discussed. CONCLUSIONS: Given the power that media have to inform or misinform the public, it is important this literature provides an accurate and balanced reflection of the therapeutic potential and associated ethical issues regarding brain organoid research. Our study suggests increasing polarization, coupled with misplaced and unfounded ethical concern. Given the inhibitory effects of public fear or disillusion on research funding, it is important media literature provides an accurate reflection of brain organoids.


Subject(s)
Brain , Organoids , Animals , Brain/physiology , Chimera , Consciousness/physiology , Ethics, Research , Humans , Organoids/physiology
3.
J Cardiovasc Dev Dis ; 6(1)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30678229

ABSTRACT

Proper heart morphogenesis requires a delicate balance between hemodynamic forces, myocardial activity, morphogen gradients, and epigenetic signaling, all of which are coupled with genetic regulatory networks. Recently both in vivo and in silico studies have tried to better understand hemodynamics at varying stages of veretebrate cardiogenesis. In particular, the intracardial hemodynamics during the onset of trabeculation is notably complex-the inertial and viscous fluid forces are approximately equal at this stage and small perturbations in morphology, scale, and steadiness of the flow can lead to significant changes in bulk flow structures, shear stress distributions, and chemical morphogen gradients. The immersed boundary method was used to numerically simulate fluid flow through simplified two-dimensional and stationary trabeculated ventricles of 72, 80, and 120 h post fertilization wild type zebrafish embryos and ErbB2-inhibited embryos at seven days post fertilization. A 2D idealized trabeculated ventricular model was also used to map the bifurcations in flow structure that occur as a result of the unsteadiness of flow, trabeculae height, and fluid scale ( R e ). Vortex formation occurred in intertrabecular regions for biologically relevant parameter spaces, wherein flow velocities increased. This indicates that trabecular morphology may alter intracardial flow patterns and hence ventricular shear stresses and morphogen gradients. A potential implication of this work is that the onset of vortical (disturbed) flows can upregulate Notch1 expression in endothelial cells in vivo and hence impacts chamber morphogenesis, valvulogenesis, and the formation of the trabeculae themselves. Our results also highlight the sensitivity of cardiac flow patterns to changes in morphology and blood rheology, motivating efforts to obtain spatially and temporally resolved chamber geometries and kinematics as well as the careful measurement of the embryonic blood rheology. The results also suggest that there may be significant changes in shear signalling due to morphological and mechanical variation across individuals and species.

4.
Cell Mol Gastroenterol Hepatol ; 6(3): 301-319, 2018.
Article in English | MEDLINE | ID: mdl-30123820

ABSTRACT

Background & Aims: The human gut microbiota is becoming increasingly recognized as a key factor in homeostasis and disease. The lack of physiologically relevant in vitro models to investigate host-microbe interactions is considered a substantial bottleneck for microbiota research. Organoids represent an attractive model system because they are derived from primary tissues and embody key properties of the native gut lumen; however, access to the organoid lumen for experimental perturbation is challenging. Here, we report the development and validation of a high-throughput organoid microinjection system for cargo delivery to the organoid lumen and high-content sampling. Methods: A microinjection platform was engineered using off-the-shelf and 3-dimensional printed components. Microinjection needles were modified for vertical trajectories and reproducible injection volumes. Computer vision (CVis) and microfabricated CellRaft Arrays (Cell Microsystems, Research Triangle Park, NC) were used to increase throughput and enable high-content sampling of mock bacterial communities. Modeling preformed using the COMSOL Multiphysics platform predicted a hypoxic luminal environment that was functionally validated by transplantation of fecal-derived microbial communities and monocultures of a nonsporulating anaerobe. Results: CVis identified and logged locations of organoids suitable for injection. Reproducible loads of 0.2 nL could be microinjected into the organoid lumen at approximately 90 organoids/h. CVis analyzed and confirmed retention of injected cargos in approximately 500 organoids over 18 hours and showed the requirement to normalize for organoid growth for accurate assessment of barrier function. CVis analyzed growth dynamics of a mock community of green fluorescent protein- or Discosoma sp. red fluorescent protein-expressing bacteria, which grew within the organoid lumen even in the presence of antibiotics to control media contamination. Complex microbiota communities from fecal samples survived and grew in the colonoid lumen without appreciable changes in complexity. Conclusions: High-throughput microinjection into organoids represents a next-generation in vitro approach to investigate gastrointestinal luminal physiology and the gastrointestinal microbiota.


Subject(s)
Colon/cytology , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/physiology , Microinjections/methods , Organoids/cytology , Animals , Bifidobacterium adolescentis/genetics , Bifidobacterium adolescentis/growth & development , Bifidobacterium adolescentis/isolation & purification , Colon/anatomy & histology , Escherichia coli/genetics , Escherichia coli/growth & development , Feces/microbiology , Humans , Male , Mice , Organoids/anatomy & histology , Single-Cell Analysis , Video Recording , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/growth & development
5.
Gastroenterology ; 155(5): 1508-1523.e10, 2018 11.
Article in English | MEDLINE | ID: mdl-30055169

ABSTRACT

BACKGROUND & AIMS: The intestinal epithelium is maintained by intestinal stem cells (ISCs), which produce postmitotic absorptive and secretory epithelial cells. Initial fate specification toward enteroendocrine, goblet, and Paneth cell lineages requires the transcription factor Atoh1, which regulates differentiation of the secretory cell lineage. However, less is known about the origin of tuft cells, which participate in type II immune responses to parasite infections and appear to differentiate independently of Atoh1. We investigated the role of Sox4 in ISC differentiation. METHODS: We performed experiments in mice with intestinal epithelial-specific disruption of Sox4 (Sox4fl/fl:vilCre; SOX4 conditional knockout [cKO]) and mice without disruption of Sox4 (control mice). Crypt- and single-cell-derived organoids were used in assays to measure proliferation and ISC potency. Lineage allocation and gene expression changes were studied by immunofluorescence, real-time quantitative polymerase chain reaction, and RNA-seq analyses. Intestinal organoids were incubated with the type 2 cytokine interleukin 13 and gene expression was analyzed. Mice were infected with the helminth Nippostrongylus brasiliensis and intestinal tissues were collected 7 days later for analysis. Intestinal tissues collected from mice that express green fluorescent protein regulated by the Atoh1 promoter (Atoh1GFP mice) and single-cell RNA-seq analysis were used to identify cells that coexpress Sox4 and Atoh1. We generated SOX4-inducible intestinal organoids derived from Atoh1fl/fl:vilCreER (ATOH1 inducible knockout) mice and assessed differentiation. RESULTS: Sox4cKO mice had impaired ISC function and secretory differentiation, resulting in decreased numbers of tuft and enteroendocrine cells. In control mice, numbers of SOX4+ cells increased significantly after helminth infection, coincident with tuft cell hyperplasia. Sox4 was activated by interleukin 13 in control organoids; SOX4cKO mice had impaired tuft cell hyperplasia and parasite clearance after infection with helminths. In single-cell RNA-seq analysis, Sox4+/Atoh1- cells were enriched for ISC, progenitor, and tuft cell genes; 12.5% of Sox4-expressing cells coexpressed Atoh1 and were enriched for enteroendocrine genes. In organoids, overexpression of Sox4 was sufficient to induce differentiation of tuft and enteroendocrine cells-even in the absence of Atoh1. CONCLUSIONS: We found Sox4 promoted tuft and enteroendocrine cell lineage allocation independently of Atoh1. These results challenge the longstanding model in which Atoh1 is the sole regulator of secretory differentiation in the intestine and are relevant for understanding epithelial responses to parasitic infection.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Enteroendocrine Cells/cytology , Goblet Cells/cytology , Intestinal Mucosa/cytology , SOXC Transcription Factors/physiology , Animals , Cell Differentiation , Cell Lineage , Hyaluronan Receptors/analysis , Mice , SOXC Transcription Factors/analysis
6.
J Cell Mol Med ; 22(3): 2007-2017, 2018 03.
Article in English | MEDLINE | ID: mdl-29265764

ABSTRACT

The Neuregulin-1 (Nrg1)/ErbB pathway plays multiple, critical roles in early cardiac and nervous system development and has been implicated in both heart and nerve repair processes. However, the early embryonic lethality of mouse Nrg1 mutants precludes an analysis of Nrg1's function in later cardiac development and homeostasis. In this study, we generated a novel nrg1 null allele targeting all known isoforms of nrg1 in zebrafish and examined cardiac structural and functional parameters throughout development. We found that zebrafish nrg1 mutants instead survived until young adult stages when they exhibited reduced survivorship. This coincided with structural and functional defects in the developing juvenile and young adult hearts, as demonstrated by reduced intracardiac myocardial density, cardiomyocyte cell number, swimming performance and dysregulated heartbeat. Interestingly, nrg1 mutant hearts were missing long axons on the ventricle surface by standard length (SL) 5 mm, which preceded juvenile and adult cardiac defects. Given that the autonomic nervous system normally exerts fine control of cardiac output through this nerve plexus, these data suggest that Nrg1 may play a critical role in establishing the cardiac nerve plexus such that inadequate innervation leads to deficits in cardiac maturation, function and survival.


Subject(s)
Gene Expression Regulation, Developmental , Heart/innervation , Longevity/genetics , Neuregulin-1/genetics , RNA, Messenger/genetics , Zebrafish/genetics , Alleles , Animals , Animals, Genetically Modified , Base Sequence , CRISPR-Cas Systems , Electrocardiography , Embryo, Nonmammalian , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Editing , Heart/growth & development , Larva/growth & development , Larva/metabolism , Locomotion/physiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Neuregulin-1/deficiency , Neurogenesis/genetics , Organogenesis/genetics , RNA, Messenger/metabolism , Zebrafish/growth & development , Zebrafish/metabolism
7.
Circ Cardiovasc Genet ; 10(3)2017 Jun.
Article in English | MEDLINE | ID: mdl-28611029

ABSTRACT

BACKGROUND: The genetic variation underlying many heritable forms of cardiovascular disease is incompletely understood, even in patients with strong family history or early age at onset. METHODS AND RESULTS: We used whole exome sequencing to detect pathogenic variants in 55 patients with suspected monogenic forms of cardiovascular disease. Diagnostic analysis of established disease genes identified pathogenic variants in 21.8% of cases and variants of uncertain significance in 34.5% of cases. Three patients harbored heterozygous nonsense or splice-site variants in the nucleoporin genes NUP37, NUP43, and NUP188, which have not been implicated previously in cardiac disease. We also identified a heterozygous splice site variant in the nuclear envelope gene SYNE1 in a child with severe dilated cardiomyopathy that underwent transplant, as well as in his affected father. To confirm a cardiovascular role for these candidate genes in vivo, we used morpholinos to reduce SYNE1, NUP37, and NUP43 gene expression in zebrafish. Morphant embryos displayed cardiac abnormalities, including pericardial edema and heart failure. Furthermore, lymphoblasts from the patient carrying a SYNE1 splice-site variant displayed changes in nuclear morphology and protein localization that are consistent with disruption of the nuclear envelope. CONCLUSIONS: These data expand the repertoire of pathogenic variants associated with cardiovascular disease and validate the diagnostic and research use of whole exome sequencing. We identify NUP37, NUP43, and NUP188 as novel candidate genes for cardiovascular disease, and suggest that dysfunction of the nuclear envelope may be an under-recognized component of inherited cardiac disease in some cases.


Subject(s)
Cardiovascular Diseases/diagnosis , Nuclear Pore Complex Proteins/genetics , Animals , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Cytoskeletal Proteins , Databases, Genetic , Embryo, Nonmammalian/metabolism , Genetic Variation , Heterozygote , Humans , Lamin Type A/metabolism , Morpholinos/metabolism , Mutation, Missense , Nerve Tissue Proteins/metabolism , Nuclear Pore Complex Proteins/antagonists & inhibitors , Nuclear Pore Complex Proteins/metabolism , Nuclear Proteins/metabolism , Phenotype , RNA Interference , RNA Splice Sites/genetics , Sequence Analysis, DNA , Exome Sequencing , Zebrafish
8.
PLoS One ; 11(11): e0166734, 2016.
Article in English | MEDLINE | ID: mdl-27846271

ABSTRACT

The Neuregulin-1 (Nrg1) signaling pathway has been widely implicated in many aspects of heart development including cardiac trabeculation. Cardiac trabeculation is an important morphogenetic process where clusters of ventricular cardiomyocytes extrude and expand into the lumen of the ventricular chambers. In mouse, Nrg1 isoforms containing an immunoglobulin-like (IgG) domain are essential for cardiac trabeculation through interaction with heterodimers of the epidermal growth factor-like (EGF-like) receptors ErbB2/ErbB4. Recent reports have underscored the importance of Nrg1 signaling in cardiac homeostasis and disease, however, placental development has precluded refined evaluation of the role of this pathway in mammals. ErbB2 has been shown to have a developmentally conserved role in cardiac trabeculation in zebrafish, a vertebrate model organism with completely external development, but the requirement for Nrg1 has not been examined. We found that among the multiple Nrg1 isoforms, the IgG domain-containing, type I Nrg1 (nrg1-I) is the only isoform detectable in the heart. Then, using CRISPR/Cas9 gene editing, we targeted the IgG domain of Nrg1 to produce novel alleles, nrg1nc28 and nrg1nc29, encoding nrg1-I and nrg1-II truncations. Our results indicated that zebrafish deficient for nrg1-I developed trabeculae in an ErbB2-dependent manner. Further, these mutants survive to reproductive adulthood with no overt cardiovascular defects. We also found that additional EGF-like ligands were expressed in the zebrafish heart during development of trabeculae. Together, these results suggest that Nrg1 is not the primary effector of trabeculation and/or that other EGF-like ligand(s) activates the ErbB2/ErbB4 pathway, either through functioning as the primary ligand or acting in a redundant manner. Overall, our work provides an example of cross-species differences in EGF family member requirements for an evolutionary conserved process.


Subject(s)
Heart/growth & development , Immunoglobulin G/genetics , Neuregulin-1/genetics , Receptor, ErbB-2/genetics , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/growth & development , CRISPR-Cas Systems , Gene Editing , Heart Ventricles/growth & development , Heart Ventricles/metabolism , Humans , Mice , Myocytes, Cardiac/metabolism , Neuregulin-1/metabolism , Protein Domains/genetics , Signal Transduction , Zebrafish/genetics , Zebrafish/growth & development
9.
Nat Commun ; 7: 13247, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27834400

ABSTRACT

Functional blood vessel growth depends on generation of distinct but coordinated responses from endothelial cells. Bone morphogenetic proteins (BMP), part of the TGFß superfamily, bind receptors to induce phosphorylation and nuclear translocation of SMAD transcription factors (R-SMAD1/5/8) and regulate vessel growth. However, SMAD1/5/8 signalling results in both pro- and anti-angiogenic outputs, highlighting a poor understanding of the complexities of BMP signalling in the vasculature. Here we show that BMP6 and BMP2 ligands are pro-angiogenic in vitro and in vivo, and that lateral vessel branching requires threshold levels of R-SMAD phosphorylation. Endothelial cell responsiveness to these pro-angiogenic BMP ligands is regulated by Notch status and Notch sets responsiveness by regulating a cell-intrinsic BMP inhibitor, SMAD6, which affects BMP responses upstream of target gene expression. Thus, we reveal a paradigm for Notch-dependent regulation of angiogenesis: Notch regulates SMAD6 expression to affect BMP responsiveness of endothelial cells and new vessel branch formation.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Neovascularization, Physiologic/physiology , Receptors, Notch/metabolism , Smad6 Protein/metabolism , Animals , Bone Morphogenetic Proteins/genetics , Cell Line , Human Umbilical Vein Endothelial Cells , Humans , Mice , Receptors, Notch/genetics , Smad6 Protein/genetics , Zebrafish
10.
J Cardiovasc Dev Dis ; 3(2)2016 Jun.
Article in English | MEDLINE | ID: mdl-27335817

ABSTRACT

Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening. With the help of modern genetics and a sequenced genome, zebrafish have led to insights in cardiovascular diseases ranging from CHDs to arrhythmia and cardiomyopathy. Here, we discuss the utility of zebrafish as a model system and summarize zebrafish cardiac morphogenesis with emphasis on parallels to human heart diseases. Additionally, we discuss the specific tools and experimental platforms utilized in the zebrafish model including forward screens, functional characterization of candidate genes, and high throughput applications.

11.
J Vis Exp ; (109)2016 Mar 12.
Article in English | MEDLINE | ID: mdl-27022828

ABSTRACT

The zebrafish (Danio rerio) is a powerful model organism to study vertebrate development. Though many aspects of zebrafish embryonic development have been described at the morphological level, little is known about the molecular basis of cellular changes that occur as the organism develops. With recent advancements in microfluidics and multiplexing technologies, it is now possible to characterize gene expression in single cells. This allows for investigation of heterogeneity between individual cells of specific cell populations to identify and classify cell subtypes, characterize intermediate states that occur during cell differentiation, and explore differential cellular responses to stimuli. This study describes a protocol to isolate viable, single cells from zebrafish embryos for high throughput multiplexing assays. This method may be rapidly applied to any zebrafish embryonic cell type with fluorescent markers. An extension of this method may also be used in combination with high throughput sequencing technologies to fully characterize the transcriptome of single cells. As proof of principle, the relative abundance of cardiac differentiation markers was assessed in isolated, single cells derived from nkx2.5 positive cardiac progenitors. By evaluation of gene expression at the single cell level and at a single time point, the data support a model in which cardiac progenitors coexist with differentiating progeny. The method and work flow described here is broadly applicable to the zebrafish research community, requiring only a labeled transgenic fish line and access to microfluidics technologies.


Subject(s)
Cell Separation/methods , Primary Cell Culture/methods , Zebrafish/embryology , Animals , Cells, Cultured , Embryo, Nonmammalian/cytology , Transcriptome , Zebrafish/metabolism
12.
Development ; 142(23): 4080-91, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26628092

ABSTRACT

Congenital heart disease often features structural abnormalities that emerge during development. Accumulating evidence indicates a crucial role for cardiac contraction and the resulting fluid forces in shaping the heart, yet the molecular basis of this function is largely unknown. Using the zebrafish as a model of early heart development, we investigated the role of cardiac contraction in chamber maturation, focusing on the formation of muscular protrusions called trabeculae. By genetic and pharmacological ablation of cardiac contraction, we showed that cardiac contraction is required for trabeculation through its role in regulating notch1b transcription in the ventricular endocardium. We also showed that Notch1 activation induces expression of ephrin b2a (efnb2a) and neuregulin 1 (nrg1) in the endocardium to promote trabeculation and that forced Notch activation in the absence of cardiac contraction rescues efnb2a and nrg1 expression. Using in vitro and in vivo systems, we showed that primary cilia are important mediators of fluid flow to stimulate Notch expression. Together, our findings describe an essential role for cardiac contraction-responsive transcriptional changes in endocardial cells to regulate cardiac chamber maturation.


Subject(s)
Gene Expression Regulation, Developmental , Heart/embryology , Receptors, Notch/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Cells, Cultured , Cilia/metabolism , Ephrin-B2/metabolism , Epistasis, Genetic , Gene Expression Profiling , Heart Ventricles/embryology , In Situ Hybridization , Neuregulin-1/metabolism , Oligonucleotides/genetics , Signal Transduction , Time Factors
13.
Am J Med Genet C Semin Med Genet ; 163C(3): 157-68, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23720419

ABSTRACT

Congenital heart diseases are some of the most common human birth defects. Though some congenital heart defects can be surgically corrected, treatment options for other congenital heart diseases are very limited. In many congenital heart diseases, genetic defects lead to impaired embryonic heart development or growth. One of the key development processes in cardiac development is chamber maturation, and alterations in this maturation process can manifest as a variety of congenital defects including non-compaction, systolic dysfunction, diastolic dysfunction, and arrhythmia. During development, to meet the increasing metabolic demands of the developing embryo, the myocardial wall undergoes extensive remodeling characterized by the formation of muscular luminal protrusions called cardiac trabeculae, increased cardiomyocyte mass, and development of the ventricular conduction system. Though the basic morphological and cytological changes involved in early heart development are clear, much remains unknown about the complex biomolecular mechanisms governing chamber maturation. In this review, we highlight evidence suggesting that a wide variety of basic signaling pathways and biomechanical forces are involved in cardiac wall maturation.


Subject(s)
Fetal Heart/embryology , Heart Defects, Congenital/embryology , Signal Transduction , Biomechanical Phenomena , Cell Proliferation , Fetal Heart/metabolism , Heart Conduction System/embryology , Heart Conduction System/physiology , Heart Defects, Congenital/metabolism , Humans , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
14.
Am J Physiol Gastrointest Liver Physiol ; 300(4): G528-37, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21183662

ABSTRACT

Cholecystokinin (CCK) is produced by discrete endocrine cells in the proximal small intestine and is released following the ingestion of food. CCK is the primary hormone responsible for gallbladder contraction and has potent effects on pancreatic secretion, gastric emptying, and satiety. In addition to fats, digested proteins and aromatic amino acids are major stimulants of CCK release. However, the cellular mechanism by which amino acids affect CCK secretion is unknown. The Ca(2+)-sensing receptor (CaSR) that was originally identified on parathyroid cells is not only sensitive to extracellular Ca(2+) but is activated by extracellular aromatic amino acids. It has been postulated that this receptor may be involved in gastrointestinal hormone secretion. Using transgenic mice expressing a CCK promoter driven/enhanced green fluorescent protein (GFP) transgene, we have been able to identify and purify viable intestinal CCK cells. Intestinal mucosal CCK cells were enriched >200-fold by fluorescence-activated cell sorting. These cells were then used for real-time PCR identification of CaSR. Immunohistochemical staining with an antibody specific for CaSR confirmed colocalization of CaSR to CCK cells. In isolated CCK cells loaded with a Ca(2+)-sensitive dye, the amino acids phenylalanine and tryptophan, but not nonaromatic amino acids, caused an increase in intracellular Ca(2+) ([Ca(2+)](i)). The increase in [Ca(2+)](i) was blocked by the CaSR inhibitor Calhex 231. Phenylalanine and tryptophan stimulated CCK release from intestinal CCK cells, and this stimulation was also blocked by CaSR inhibition. Electrophysiological recordings from isolated CCK-GFP cells revealed these cells to possess a predominant outwardly rectifying potassium current. Administration of phenylalanine inhibited basal K(+) channel activity and caused CCK cell depolarization, consistent with changes necessary for hormone secretion. These findings indicate that amino acids have a direct effect on CCK cells to stimulate CCK release by activating CaSR and suggest that CaSR is the physiological mechanism through which amino acids regulate CCK secretion.


Subject(s)
Amino Acids/metabolism , Cholecystokinin/metabolism , Intestinal Mucosa/metabolism , Receptors, Calcium-Sensing/metabolism , Amino Acids/pharmacology , Animals , Calcium/metabolism , Cells, Cultured , Cholecystokinin/genetics , Electrophysiology , Flow Cytometry , Immunohistochemistry , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Mice , Mice, Transgenic , Potassium/metabolism , Receptors, Calcium-Sensing/genetics , Reverse Transcriptase Polymerase Chain Reaction
15.
J Mol Histol ; 42(1): 3-13, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21061049

ABSTRACT

The peptide tyrosine tyrosine (PYY) is produced and secreted from L cells of the gastrointestinal mucosa. To study the anatomy and function of PYY-secreting L cells, we developed a transgenic PYY-green fluorescent protein mouse model. PYY-containing cells exhibited green fluorescence under UV light and were immunoreactive to antibodies against PYY and GLP-1 (glucagon-like peptide-1, an incretin hormone also secreted by L cells). PYY-GFP cells from 15 µm thick sections were imaged using confocal laser scanning microscopy and three-dimensionally (3D) reconstructed. Results revealed unique details of the anatomical differences between ileal and colonic PYY-GFP cells. In ileal villi, the apical portion of PYY cells makes minimal contact with the lumen of the gut. Long pseudopod-like basal processes extend from these cells and form an interface between the mucosal epithelium and the lamina propria. Some basal processes are up to 50 µm in length. Multiple processes can be seen protruding from one cell and these often have a terminus resembling a synapse that appears to interact with neighboring cells. In colonic crypts, PYY-GFP cells adopt a spindle-like shape and weave in between epithelial cells, while maintaining contact with the lumen and lamina propria. In both tissues, cytoplasmic granules containing the hormones PYY and GLP-1 are confined to the base of the cell, often filling the basal process. The anatomical arrangement of these structures suggests a dual function as a dock for receptors to survey absorbed nutrients and as a launching platform for hormone secretion in a paracrine fashion.


Subject(s)
Colon/cytology , Ileum/cytology , Peptide YY/metabolism , Pseudopodia/metabolism , Animals , Colon/metabolism , Enteroendocrine Cells/cytology , Glucagon-Like Peptide 1/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Ileum/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Mice , Mice, Transgenic , Peptide YY/genetics , Protein Transport/physiology , Pseudopodia/ultrastructure
16.
Cell Tissue Res ; 341(2): 289-97, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20582553

ABSTRACT

Cholecystokinin (CCK) is secreted by neuroendocrine cells comprising 0.1%-0.5% of the mucosal cells in the upper small intestine. Using CCK promoter-driven green fluorescent protein (GFP) expression in transgenic mice, we have applied immunofluorescence techniques to analyze the morphology of CCK cells. GFP and CCK colocalize in neuroendocrine cells with little aberrant GFP expression. CCK-containing cells are either flask- or spindle-shaped, and in some cells, we have found dendritic processes similar to pseudopods demonstrated for gut somatostatin-containing D cells. Most pseudopods are short, the longest process visualized extending across three cells. Pseudopods usually extend to adjacent cells but some weave between neighboring cells. Dual processes have also been observed. Three-dimensional reconstructions suggest that processes are not unidirectional and thus are unlikely to be involved in migration of CCK cells from the crypt up the villus. Abundant CCK immunostaining is present in the pseudopods, suggesting that they release CCK onto the target cell. In order to identify the type of cells being targeted, we have co-stained sections with antibodies to chromogranin A, trefoil factor-3, and sucrase-isomaltase. CCK cell processes almost exclusively extend to sucrase-isomaltase-positive enterocytes. Thus, CCK cells have cellular processes possibly involved in paracrine secretion.


Subject(s)
Cholecystokinin/analysis , Intestine, Small/cytology , Neuroendocrine Cells/cytology , Pseudopodia/ultrastructure , Animals , Cholecystokinin/immunology , Chromogranin A/immunology , Fluorescent Antibody Technique , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Mice , Mice, Transgenic , Mucins/immunology , Neuroendocrine Cells/chemistry , Paracrine Communication/immunology , Pseudopodia/chemistry , Somatostatin/metabolism , Somatostatin-Secreting Cells/chemistry , Somatostatin-Secreting Cells/cytology , Sucrase-Isomaltase Complex/immunology , Trefoil Factor-3
SELECTION OF CITATIONS
SEARCH DETAIL
...