Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Protoc ; 19(3): 700-726, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38092944

ABSTRACT

Two decades after the genomics revolution, oncology is rapidly transforming into a genome-driven discipline, yet routine cancer diagnostics is still mainly microscopy based, except for tumor type-specific predictive molecular tests. Pathology laboratories struggle to quickly validate and adopt biomarkers identified by genomics studies of new targeted therapies. Consequently, clinical implementation of newly approved biomarkers suffers substantial delays, leading to unequal patient access to these therapies. Whole-genome sequencing (WGS) can successfully address these challenges by providing a stable molecular diagnostic platform that allows detection of a multitude of genomic alterations in a single cost-efficient assay and facilitating rapid implementation, as well as by the development of new genomic biomarkers. Recently, the Whole-genome sequencing Implementation in standard Diagnostics for Every cancer patient (WIDE) study demonstrated that WGS is a feasible and clinically valid technique in routine clinical practice with a turnaround time of 11 workdays. As a result, WGS was successfully implemented at the Netherlands Cancer Institute as part of routine diagnostics in January 2021. The success of implementing WGS has relied on adhering to a comprehensive protocol including recording patient information, sample collection, shipment and storage logistics, sequencing data interpretation and reporting, integration into clinical decision-making and data usage. This protocol describes the use of fresh-frozen samples that are necessary for WGS but can be challenging to implement in pathology laboratories accustomed to using formalin-fixed paraffin-embedded samples. In addition, the protocol outlines key considerations to guide uptake of WGS in routine clinical care in hospitals worldwide.


Subject(s)
Neoplasms , Humans , Workflow , Whole Genome Sequencing/methods , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/pathology , Genomics , Biomarkers
2.
Genet Med ; 26(2): 101032, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38006283

ABSTRACT

PURPOSE: Genome sequencing (GS) enables comprehensive molecular analysis of tumors and identification of hereditary cancer predisposition. According to guidelines, directly determining pathogenic germline variants (PGVs) requires pretest genetic counseling, which is cost-ineffective. Referral for genetic counseling based on tumor variants alone could miss relevant PGVs and/or result in unnecessary referrals. METHODS: We validated GS for detection of germline variants and simulated 3 strategies using paired tumor-normal GS data of 937 metastatic patients. In strategy-1, genetic counseling before tumor testing allowed direct PGV analysis. In strategy-2 and -3, germline testing and referral for post-test genetic counseling is based on tumor variants using Dutch (strategy-2) or Europen Society for Medical Oncology (ESMO) Precision Medicine Working Group (strategy-3) guidelines. RESULTS: In strategy-1, PGVs would be detected in 50 patients (number-needed-to counsel; NTC = 18.7). In strategy-2, 86 patients would have been referred for genetic counseling and 43 would have PGVs (NTC = 2). In strategy-3, 94 patients would have been referred for genetic counseling and 32 would have PGVs (NTC = 2.9). Hence, 43 and 62 patients, respectively, were unnecessarily referred based on a somatic variant. CONCLUSION: Both post-tumor test counseling strategies (2 and 3) had significantly lower NTC, and strategy-2 had the highest PGV yield. Combining pre-tumor test mainstreaming and post-tumor test counseling may maximize the clinically relevant PGV yield and minimize unnecessary referrals.


Subject(s)
Genetic Counseling , Neoplasms , Humans , Genetic Testing , Workload , Neoplasms/diagnosis , Neoplasms/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics
3.
Cancer Cell ; 41(12): 2083-2099.e9, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38086335

ABSTRACT

Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.


Subject(s)
Carcinoma, Neuroendocrine , Lung Neoplasms , Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/metabolism , Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Pancreatic Neoplasms/pathology
4.
J Pathol ; 258(2): 179-188, 2022 10.
Article in English | MEDLINE | ID: mdl-35792649

ABSTRACT

The current increase in number and diversity of targeted anticancer agents poses challenges to the logistics and timeliness of molecular diagnostics (MolDx), resulting in underdiagnosis and treatment. Whole-genome sequencing (WGS) may provide a sustainable solution for addressing current as well as future diagnostic challenges. The present study therefore aimed to prospectively assess feasibility, validity, and value of WGS in routine clinical practice. WGS was conducted independently of, and in parallel with, standard of care (SOC) diagnostics on routinely obtained tumor samples from 1,200 consecutive patients with metastatic cancer. Results from both tests were compared and discussed in a dedicated tumor board. From 1,200 patients, 1,302 samples were obtained, of which 1,216 contained tumor cells. WGS was successful in 70% (854/1,216) of samples with a median turnaround time of 11 days. Low tumor purity (<20%) was the main reason for not completing WGS. WGS identified 99.2% and SOC MolDx 99.7% of the total of 896 biomarkers found in genomic regions covered by both tests. Actionable biomarkers were found in 603/848 patients (71%). Of the 936 associated therapy options identified by WGS, 343 were identified with SOC MolDx (36.6%). Biomarker-based therapy was started in 147 patients. WGS revealed 49 not previously identified pathogenic germline variants. Fresh-frozen, instead of formalin-fixed and paraffin-embedded, sample logistics were easily adopted as experienced by the professionals involved. WGS for patients with metastatic cancer is well feasible in routine clinical practice, successfully yielding comprehensive genomic profiling for the vast majority of patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Neoplasms , Feasibility Studies , Genomics/methods , Humans , Neoplasms/diagnosis , Neoplasms/genetics , United Kingdom , Whole Genome Sequencing/methods
5.
Cancers (Basel) ; 14(2)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35053600

ABSTRACT

With more than 70 different histological sarcoma subtypes, accurate classification can be challenging. Although characteristic genetic events can largely facilitate pathological assessment, large-scale molecular profiling generally is not part of regular diagnostic workflows for sarcoma patients. We hypothesized that whole genome sequencing (WGS) optimizes clinical care of sarcoma patients by detection of diagnostic and actionable genomic characteristics, and of underlying hereditary conditions. WGS of tumor and germline DNA was incorporated in the diagnostic work-up of 83 patients with a (presumed) sarcomas in a tertiary referral center. Clinical follow-up data were collected prospectively to assess impact of WGS on clinical decision making. In 12/83 patients (14%), the genomic profile led to revision of cancer diagnosis, with change of treatment plan in eight. All twelve patients had undergone multiple tissue retrieval procedures and immunohistopathological assessments by regional and expert pathologists prior to WGS analysis. Actionable biomarkers with therapeutic potential were identified for 30/83 patients. Pathogenic germline variants were present in seven patients. In conclusion, unbiased genomic characterization with WGS identifies genomic biomarkers with direct clinical implications for sarcoma patients. Given the diagnostic complexity and high unmet need for new treatment opportunities in sarcoma patients, WGS can be an important extension of the diagnostic arsenal of pathologists.

6.
J Mol Diagn ; 23(7): 816-833, 2021 07.
Article in English | MEDLINE | ID: mdl-33964451

ABSTRACT

Whole genome sequencing (WGS) using fresh-frozen tissue and matched blood samples from cancer patients may become the most complete genetic tumor test. With the increasing availability of small biopsies and the need to screen more number of biomarkers, the use of a single all-inclusive test is preferable over multiple consecutive assays. To meet high-quality diagnostics standards, we optimized and clinically validated WGS sample and data processing procedures, resulting in a technical success rate of 95.6% for fresh-frozen samples with sufficient (≥20%) tumor content. Independent validation of identified biomarkers against commonly used diagnostic assays showed a high sensitivity (recall; 98.5%) and precision (positive predictive value; 97.8%) for detection of somatic single-nucleotide variants and insertions and deletions (across 22 genes), and high concordance for detection of gene amplification (97.0%; EGFR and MET) as well as somatic complete loss (100%; CDKN2A/p16). Gene fusion analysis showed a concordance of 91.3% between DNA-based WGS and an orthogonal RNA-based gene fusion assay. Microsatellite (in)stability assessment showed a sensitivity of 100% with a precision of 94%, and virus detection (human papillomavirus), an accuracy of 100% compared with standard testing. In conclusion, whole genome sequencing has a >95% sensitivity and precision compared with routinely used DNA techniques in diagnostics, and all relevant mutation types can be detected reliably in a single assay.


Subject(s)
Alphapapillomavirus/genetics , Neoplasms/diagnosis , Neoplasms/genetics , Papillomavirus Infections/diagnosis , Papillomavirus Infections/genetics , Whole Genome Sequencing/methods , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , DNA Copy Number Variations , DNA, Viral/genetics , DNA, Viral/isolation & purification , Data Accuracy , Gene Amplification , Humans , INDEL Mutation , Microsatellite Instability , Neoplasms/blood , Neoplasms/pathology , Papillomavirus Infections/virology , Polymorphism, Single Nucleotide , Predictive Value of Tests , Reproducibility of Results , Retrospective Studies
7.
J Thorac Oncol ; 16(5): 798-806, 2021 05.
Article in English | MEDLINE | ID: mdl-33588111

ABSTRACT

INTRODUCTION: RET gene fusions are established oncogenic drivers in 1% of NSCLC. Accurate detection of advanced patients with RET fusions is essential to ensure optimal therapy choice. We investigated the performance of fluorescence in situ hybridization (FISH) as a diagnostic test for detecting functional RET fusions. METHODS: Between January 2016 and November 2019, a total of 4873 patients with NSCLC were routinely screened for RET fusions using either FISH (n = 2858) or targeted RNA next-generation sequencing (NGS) (n = 2015). If sufficient material was available, positive cases were analyzed by both methods (n = 39) and multiple FISH assays (n = 17). In an independent cohort of 520 patients with NSCLC, whole-genome sequencing data were investigated for disruptive structural variations and functional fusions in the RET and compared with ALK and ROS1 loci. RESULTS: FISH analysis revealed RET rearrangement in 48 of 2858 cases; of 30 rearranged cases double tested with NGS, only nine had a functional RET fusion. RNA NGS yielded RET fusions in 14 of 2015 cases; all nine cases double tested by FISH had RET locus rearrangement. Of these 18 verified RET fusion cases, 16 had a split signal and two a complex rearrangement by FISH. By whole-genome sequencing, the prevalence of functional fusions compared with all disruptive events was lower in the RET (4 of 9, 44%) than the ALK (27 of 34, 79%) and ROS1 (9 of 12, 75%) loci. CONCLUSIONS: FISH is a sensitive but unspecific technique for RET screening, always requiring a confirmation using an orthogonal technique, owing to frequently occurring RET rearrangements not resulting in functional fusions in NSCLC.


Subject(s)
Lung Neoplasms , Protein-Tyrosine Kinases , Anaplastic Lymphoma Kinase/genetics , Early Detection of Cancer , Gene Rearrangement , Humans , In Situ Hybridization, Fluorescence , Lung Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-ret/genetics
8.
Histopathology ; 78(4): 556-566, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32931025

ABSTRACT

AIMS: To investigate the clinicopathological significance of driver mutations in metastatic well-differentiated small intestine neuroendocrine tumours (SI-NETs). METHODS AND RESULTS: Whole genome sequencing (WGS) of 35 metastatic SI-NETs and next-generation sequencing (NGS) of eight metastatic SI-NETs were performed. Biopsies were obtained between 2015 and 2019. Tumours were classified according to the 2019 World Health Organization classification. WGS included assessment of somatic mutations in all cancer-related driver genes, the tumour mutational burden (TMB), and microsatellite status. NGS entailed a cancer hotspot panel of 58 genes. Our cohort consisted of 21% grade 1, 60% grade 2 and 19% grade 3 SI-NETs. Driver mutations were identified in ~50% of SI-NETs. In total, 27 driver mutations were identified, of which 74% were in tumour suppressor genes (e.g. TP53, RB1, and CDKN1B) and 22% were in proto-oncogenes (e.g. KRAS, NRAS, and MET). Allelic loss of chromosome 18 (63%), complete loss of CDKN2A and CDKN1B (both 6%) and CDKN1B mutations (9%) were most common. Potential targetable genetic alterations were detected in 21% of metastasised SI-NETs. All tumours were microsatellite-stable and showed low TMBs (median 1.10; interquartile range 0.87-1.35). The Ki67 proliferation index was significantly associated with the presence of driver mutations (P = 0.015). CONCLUSION: Driver mutations occur in 50% of metastasised SI-NETs, and their presence is associated with a high Ki67 proliferation index. The identification of targetable mutations make these patients potentially eligible for targeted therapy.


Subject(s)
Biomarkers, Tumor/genetics , Intestinal Neoplasms/genetics , Neuroendocrine Tumors/genetics , Cohort Studies , Female , High-Throughput Nucleotide Sequencing , Humans , Intestinal Neoplasms/pathology , Intestine, Small/pathology , Male , Mutation , Neuroendocrine Tumors/pathology , Sequence Analysis, DNA
9.
BMC Med Genomics ; 13(1): 169, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33167975

ABSTRACT

BACKGROUND: 'Precision oncology' can ensure the best suitable treatment at the right time by tailoring treatment towards individual patient and comprehensive tumour characteristics. In current molecular pathology, diagnostic tests which are part of the standard of care (SOC) only cover a limited part of the spectrum of genomic changes, and often are performed in an iterative way. This occurs at the expense of valuable patient time, available tissue sample, and interferes with 'first time right' treatment decisions. Whole Genome Sequencing (WGS) captures a near complete view of genomic characteristics of a tumour in a single test. Moreover, WGS facilitates faster implementation of new treatment relevant biomarkers. At present, WGS mainly has been applied in study settings, but its performance in a routine diagnostic setting remains to be evaluated. The WIDE study aims to investigate the feasibility and validity of WGS-based diagnostics in clinical practice. METHODS: 1200 consecutive patients in a single comprehensive cancer centre with (suspicion of) a metastasized solid tumour will be enrolled with the intention to analyse tumour tissue with WGS, in parallel to SOC diagnostics. Primary endpoints are (1) feasibility of implementation of WGS-based diagnostics into routine clinical care and (2) clinical validation of WGS by comparing identification of treatment-relevant variants between WGS and SOC molecular diagnostics. Secondary endpoints entail (1) added clinical value in terms of additional treatment options and (2) cost-effectiveness of WGS compared to SOC diagnostics through a Health Technology Assessment (HTA) analysis. Furthermore, the (3) perceived impact of WGS-based diagnostics on clinical decision making will be evaluated through questionnaires. The number of patients included in (experimental) therapies initiated based on SOC or WGS diagnostics will be reported with at least 3 months follow-up. The clinical efficacy is beyond the scope of WIDE. Key performance indicators will be evaluated after every 200 patients enrolled, and procedures optimized accordingly, to continuously improve the diagnostic performance of WGS in a routine clinical setting. DISCUSSION: WIDE will yield the optimal conditions under which WGS can be implemented in a routine molecular diagnostics setting and establish the position of WGS compared to SOC diagnostics in routine clinical care.


Subject(s)
Molecular Diagnostic Techniques , Neoplasms/diagnosis , Precision Medicine/methods , Whole Genome Sequencing , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Clinical Decision-Making , DNA, Neoplasm/genetics , Feasibility Studies , Humans , Molecular Diagnostic Techniques/economics , Molecular Diagnostic Techniques/methods , Neoplasms/chemistry , Neoplasms/genetics , Observational Studies as Topic , Patient Selection , Research Design , Specimen Handling/methods , Standard of Care , Technology Assessment, Biomedical , Whole Genome Sequencing/economics , Whole Genome Sequencing/methods , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL