Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
2.
DNA Repair (Amst) ; 135: 103632, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280242

ABSTRACT

Neurodevelopment is a tightly coordinated process, during which the genome is exposed to spectra of endogenous agents at different stages of differentiation. Emerging evidence indicates that DNA damage is an important feature of developing brain, tightly linked to gene expression and neuronal activity. Some of the most frequent DNA damage includes changes to DNA bases, which are recognized by DNA glycosylases and repaired through base excision repair (BER) pathway. The only mammalian DNA glycosylase able to remove frequent alkylated DNA based is alkyladenine DNA glycosylase (Aag, aka Mpg). We recently demonstrated that, besides its role in DNA repair, AAG affects expression of neurodevelopmental genes in human cells. Aag was further proposed to act as reader of epigenetic marks, including 5-hydroxymethylcytosine (5hmC), in the mouse brain. Despite the potential Aag involvement in the key brain processes, the impact of Aag loss on developing brain remains unknown. Here, by using Aag knockout (Aag-/-) mice, we show that Aag absence leads to reduced DNA break levels, evident in lowered number of γH2AX foci in postnatal day 5 (P5) hippocampi. This is accompanied by changes in 5hmC signal intensity in different hippocampal regions. Transcriptome analysis of hippocampi and prefrontal cortex, at different developmental stages, indicates that lack of Aag alters gene expression, primarily of genes involved in regulation of response to stress. Across all developmental stages tested aldehyde dehydrogenase 2 (Aldh2) emerged as one of the most prominent genes deregulated in Aag-dependent manner. In line with the changes in hippocampal DNA damage levels and the gene expression, adult Aag-/- mice exhibit altered behavior, evident in decreased anxiety levels determined in the Elevated Zero Maze and increased alternations in the Elevated T Maze tests. Taken together these results suggests that Aag has functions in modulation of genome dynamics during brain development, important for animal behavior.


Subject(s)
DNA Glycosylases , Humans , Mice , Animals , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA , Anxiety/genetics , Brain/metabolism , Gene Expression , Mammals/genetics
3.
NAR Cancer ; 5(2): zcad015, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36992846

ABSTRACT

DNA-methylating environmental carcinogens such as N-nitrosodimethylamine (NDMA) and certain alkylators used in chemotherapy form O 6-methylguanine (m6G) as a functionally critical intermediate. NDMA is a multi-organ carcinogen found in contaminated water, polluted air, preserved foods, tobacco products, and many pharmaceuticals. Only ten weeks after exposure to NDMA, neonatally-treated mice experienced elevated mutation frequencies in liver, lung and kidney of ∼35-fold, 4-fold and 2-fold, respectively. High-resolution mutational spectra (HRMS) of liver and lung revealed distinctive patterns dominated by GC→AT mutations in 5'-Pu-G-3' contexts, very similar to human COSMIC mutational signature SBS11. Commonly associated with alkylation damage, SBS11 appears in cancers treated with the DNA alkylator temozolomide (TMZ). When cells derived from the mice were treated with TMZ, N-methyl-N-nitrosourea, and streptozotocin (two other therapeutic methylating agents), all displayed NDMA-like HRMS, indicating mechanistically convergent mutational processes. The role of m6G in shaping the mutational spectrum of NDMA was probed by removing MGMT, the main cellular defense against m6G. MGMT-deficient mice displayed a strikingly enhanced mutant frequency, but identical HRMS, indicating that the mutational properties of these alkylators is likely owed to sequence-specific DNA binding. In sum, the HRMS of m6G-forming agents constitute an early-onset biomarker of exposure to DNA methylating carcinogens and drugs.

4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35197283

ABSTRACT

Alkylating agents damage DNA and proteins and are widely used in cancer chemotherapy. While cellular responses to alkylation-induced DNA damage have been explored, knowledge of how alkylation affects global cellular stress responses is sparse. Here, we examined the effects of the alkylating agent methylmethane sulfonate (MMS) on gene expression in mouse liver, using mice deficient in alkyladenine DNA glycosylase (Aag), the enzyme that initiates the repair of alkylated DNA bases. MMS induced a robust transcriptional response in wild-type liver that included markers of the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) known to be controlled by XBP1, a key UPR effector. Importantly, this response is significantly reduced in the Aag knockout. To investigate how AAG affects alkylation-induced UPR, the expression of UPR markers after MMS treatment was interrogated in human glioblastoma cells expressing different AAG levels. Alkylation induced the UPR in cells expressing AAG; conversely, AAG knockdown compromised UPR induction and led to a defect in XBP1 activation. To verify the requirements for the DNA repair activity of AAG in this response, AAG knockdown cells were complemented with wild-type Aag or with an Aag variant producing a glycosylase-deficient AAG protein. As expected, the glycosylase-defective Aag does not fully protect AAG knockdown cells against MMS-induced cytotoxicity. Remarkably, however, alkylation-induced XBP1 activation is fully complemented by the catalytically inactive AAG enzyme. This work establishes that, besides its enzymatic activity, AAG has noncanonical functions in alkylation-induced UPR that contribute to cellular responses to alkylation.


Subject(s)
DNA Glycosylases/metabolism , DNA Repair , Protein Unfolding , Alkylation , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Endoplasmic Reticulum Stress , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , X-Box Binding Protein 1/metabolism
5.
DNA Repair (Amst) ; 106: 103176, 2021 10.
Article in English | MEDLINE | ID: mdl-34365116

ABSTRACT

DNA damage can be cytotoxic and mutagenic, and it is directly linked to aging, cancer, and other diseases. To counteract the deleterious effects of DNA damage, cells have evolved highly conserved DNA repair pathways. Many commonly used DNA repair assays are relatively low throughput and are limited to analysis of one protein or one pathway. Here, we have explored the capacity of the CometChip platform for parallel analysis of multiple DNA repair activities. Taking advantage of the versatility of the traditional comet assay and leveraging micropatterning techniques, the CometChip platform offers increased throughput and sensitivity compared to the traditional comet assay. By exposing cells to DNA damaging agents that create substrates of Base Excision Repair, Nucleotide Excision Repair, and Non-Homologous End Joining, we show that the CometChip is an effective method for assessing repair deficiencies in all three pathways. With these applications of the CometChip platform, we expand the utility of the comet assay for precise, high-throughput, parallel analysis of multiple DNA repair activities.


Subject(s)
Comet Assay/methods , DNA Damage , DNA Repair , High-Throughput Screening Assays/methods , Cell Line , Cell Line, Tumor , DNA/drug effects , DNA/metabolism , DNA/radiation effects , DNA End-Joining Repair , Humans , Mutagens/toxicity
6.
Free Radic Biol Med ; 174: 89-99, 2021 10.
Article in English | MEDLINE | ID: mdl-34324980

ABSTRACT

Although DNA repair is known to impact susceptibility to cancer and other diseases, relatively few population studies have been performed to evaluate DNA repair kinetics in people due to the difficulty of assessing DNA repair in a high-throughput manner. Here we use the CometChip, a high-throughput comet assay, to explore inter-individual variation in repair of oxidative damage to DNA, a known risk factor for aging, cancer and other diseases. DNA repair capacity after H2O2-induced DNA oxidation damage was quantified in peripheral blood mononuclear cells (PBMCs). For 10 individuals, blood was drawn at several times over the course of 4-6 weeks. In addition, blood was drawn once from each of 56 individuals. DNA damage levels were quantified prior to exposure to H2O2 and at 0, 15, 30, 60, and 120-min post exposure. We found that there is significant variability in DNA repair efficiency among individuals. When subdivided into quartiles by DNA repair efficiency, we found that the average t1/2 is 81 min for the slowest group and 24 min for the fastest group. This work shows that the CometChip can be used to uncover significant differences in repair kinetics among people, pointing to its utility in future epidemiological and clinical studies.


Subject(s)
Hydrogen Peroxide , Leukocytes, Mononuclear , Comet Assay , DNA Damage , DNA Repair , Humans , Individuality , Kinetics , Lymphocytes , Oxidative Stress/genetics
8.
Cell Rep ; 34(11): 108864, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33730582

ABSTRACT

N-Nitrosodimethylamine (NDMA) is a DNA-methylating agent that has been discovered to contaminate water, food, and drugs. The alkyladenine DNA glycosylase (AAG) removes methylated bases to initiate the base excision repair (BER) pathway. To understand how gene-environment interactions impact disease susceptibility, we study Aag-knockout (Aag-/-) and Aag-overexpressing mice that harbor increased levels of either replication-blocking lesions (3-methyladenine [3MeA]) or strand breaks (BER intermediates), respectively. Remarkably, the disease outcome switches from cancer to lethality simply by changing AAG levels. To understand the underlying basis for this observation, we integrate a suite of molecular, cellular, and physiological analyses. We find that unrepaired 3MeA is somewhat toxic, but highly mutagenic (promoting cancer), whereas excess strand breaks are poorly mutagenic and highly toxic (suppressing cancer and promoting lethality). We demonstrate that the levels of a single DNA repair protein tip the balance between blocks and breaks and thus dictate the disease consequences of DNA damage.


Subject(s)
DNA Replication/genetics , Mutagenesis/genetics , Neoplasms/genetics , Neoplasms/pathology , Animals , Biomarkers, Tumor/metabolism , Cell Death , Chromosomal Instability/genetics , DNA Damage/genetics , DNA Glycosylases/deficiency , DNA Glycosylases/metabolism , DNA Repair/genetics , Diethylnitrosamine , Disease Susceptibility , Histones/metabolism , Homologous Recombination/genetics , Liver/pathology , Liver Neoplasms/pathology , Mice, Inbred C57BL , Mice, Transgenic , Micronuclei, Chromosome-Defective , Nitrosamines , Phenotype , Phosphoproteins/metabolism , Phosphorylation
9.
Nucleic Acids Res ; 48(3): e13, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31822921

ABSTRACT

Genotoxicity testing is critical for predicting adverse effects of pharmaceutical, industrial, and environmental chemicals. The alkaline comet assay is an established method for detecting DNA strand breaks, however, the assay does not detect potentially carcinogenic bulky adducts that can arise when metabolic enzymes convert pro-carcinogens into a highly DNA reactive products. To overcome this, we use DNA synthesis inhibitors (hydroxyurea and 1-ß-d-arabinofuranosyl cytosine) to trap single strand breaks that are formed during nucleotide excision repair, which primarily removes bulky lesions. In this way, comet-undetectable bulky lesions are converted into comet-detectable single strand breaks. Moreover, we use HepaRG™ cells to recapitulate in vivo metabolic capacity, and leverage the CometChip platform (a higher throughput more sensitive comet assay) to create the 'HepaCometChip', enabling the detection of bulky genotoxic lesions that are missed by current genotoxicity screens. The HepaCometChip thus provides a broadly effective approach for detection of bulky DNA adducts.


Subject(s)
Comet Assay/methods , DNA Adducts/analysis , Carcinogenesis , Cell Line , DNA Breaks, Single-Stranded , DNA Repair , Humans , Microarray Analysis/methods , Sensitivity and Specificity
10.
Nat Commun ; 10(1): 5460, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31784530

ABSTRACT

Base excision repair (BER) initiated by alkyladenine DNA glycosylase (AAG) is essential for removal of aberrantly methylated DNA bases. Genome instability and accumulation of aberrant bases accompany multiple diseases, including cancer and neurological disorders. While BER is well studied on naked DNA, it remains unclear how BER efficiently operates on chromatin. Here, we show that AAG binds to chromatin and forms complex with RNA polymerase (pol) II. This occurs through direct interaction with Elongator and results in transcriptional co-regulation. Importantly, at co-regulated genes, aberrantly methylated bases accumulate towards the 3'end in regions enriched for BER enzymes AAG and APE1, Elongator and active RNA pol II. Active transcription and functional Elongator are further crucial to ensure efficient BER, by promoting AAG and APE1 chromatin recruitment. Our findings provide insights into genome stability maintenance in actively transcribing chromatin and reveal roles of aberrantly methylated bases in regulation of gene expression.


Subject(s)
Chromatin/metabolism , DNA Glycosylases/metabolism , DNA Repair/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Gene Expression Regulation/genetics , RNA Polymerase II/metabolism , Chromatin/genetics , DNA Methylation , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Gene Expression , Genomic Instability , HEK293 Cells , Humans , RNA Polymerase II/genetics , Transcription Elongation, Genetic , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
12.
Environ Health ; 18(1): 51, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31174534

ABSTRACT

BACKGROUND: Growing evidence indicates that in utero arsenic exposures in humans may increase the risk of adverse health effects and development of diseases later in life. This study aimed to evaluate potential health risks of in utero arsenic exposure on genetic damage in newborns in relation to maternal arsenic exposure. METHODS: A total of 205 pregnant women residing in arsenic-contaminated areas in Hanam province, Vietnam, were recruited. Prenatal arsenic exposure was determined by arsenic concentration in mother's toenails and urine during pregnancy and in umbilical cord blood collected at delivery. Genetic damage in newborns was assessed by various biomarkers of early genetic effects including oxidative/nitrative DNA damage (8-hydroxydeoxyguanosine, 8-OHdG, and 8-nitroguanine), DNA strand breaks and micronuclei (MN) in cord blood. RESULTS: Maternal arsenic exposure, measured by arsenic levels in toenails and urine, was significantly increased (p <  0.05) in subjects residing in areas with high levels of arsenic contamination in drinking water. Cord blood arsenic level was significantly increased in accordance with maternal arsenic exposure (p <  0.001). Arsenic exposure in utero is associated with genotoxic effects in newborns indicated as increased levels of 8-OHdG, 8-nitroguanine, DNA strand breaks and MN frequency in cord blood with increasing levels of maternal arsenic exposure. Maternal toenail arsenic level was significantly associated with all biomarkers of early genetic effects, while cord blood arsenic levels associated with DNA strand breaks and MN frequency. CONCLUSIONS: In utero arsenic exposure is associated with various types of genetic damage in newborns potentially contributing to the development of diseases, including cancer, later in life.


Subject(s)
Arsenic/toxicity , DNA Damage/drug effects , Fetal Blood/chemistry , Maternal Exposure/adverse effects , Micronuclei, Chromosome-Defective/drug effects , Adult , Biomarkers/blood , Female , Humans , Infant, Newborn , Nails/chemistry , Pregnancy , Vietnam , Young Adult
13.
PLoS One ; 14(2): e0208341, 2019.
Article in English | MEDLINE | ID: mdl-30811507

ABSTRACT

The DNA repair protein O6-methylguanine DNA methyltransferase (MGMT) strongly influences the effectiveness of cancer treatment with chemotherapeutic alkylating agents, and MGMT status in cancer cells could potentially contribute to tailored therapies for individual patients. However, the promoter methylation and immunohistochemical assays presently used for measuring MGMT in clinical samples are indirect, cumbersome and sometimes do not accurately report MGMT activity. Here we directly compare the accuracy of 6 analytical methods, including two fluorescent reporter assays, against the in vitro MGMT activity assay that is considered the gold standard for measuring MGMT DNA repair capacity. We discuss the relative advantages of each method. Our data indicate that two recently developed fluorescence-based assays measure MGMT activity accurately and efficiently, and could provide a functional dimension to clinical efforts to identify patients who are likely to benefit from alkylating chemotherapy.


Subject(s)
Biological Assay/methods , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Fluorescent Dyes/administration & dosage , Tumor Suppressor Proteins/genetics , Antineoplastic Agents, Alkylating/pharmacology , Cell Line , DNA Methylation/drug effects , DNA Repair/genetics , Humans , Promoter Regions, Genetic/genetics
14.
Sci Signal ; 12(568)2019 02 12.
Article in English | MEDLINE | ID: mdl-30755477

ABSTRACT

DNA-alkylating agents are commonly used to kill cancer cells, but the base excision repair (BER) pathway they trigger can also produce toxic intermediates that cause tissue damage, such as retinal degeneration (RD). Apoptosis, a process of programmed cell death, is assumed to be the main mechanism of this alkylation-induced photoreceptor (PR) cell death in RD. Here, we studied the involvement of necroptosis (another programmed cell death process) and inflammation in alkylation-induced RD. Male mice exposed to a methylating agent exhibited a reduced number of PR cell rows, active gliosis, and cytokine induction and macrophage infiltration in the retina. Dying PRs exhibited a necrotic morphology, increased 8-hydroxyguanosine abundance (an oxidative damage marker), and overexpression of the necroptosis-associated genes Rip1 and Rip3 The activity of PARP1, which mediates BER, cell death, and inflammation, was increased in PR cells and associated with the release of proinflammatory chemokine HMGB1 from PR nuclei. Mice lacking the anti-inflammatory cytokine IL-10 exhibited more severe RD, whereas deficiency of RIP3 (also known as RIPK3) conferred partial protection. Female mice were partially protected from alkylation-induced RD, showing reduced necroptosis and inflammation compared to males. PRs in mice lacking the BER-initiating DNA glycosylase AAG did not exhibit alkylation-induced necroptosis or inflammation. Our findings show that AAG-initiated BER at alkylated DNA bases induces sex-dependent RD primarily by triggering necroptosis and activating an inflammatory response that amplifies the original damage and, furthermore, reveal new potential targets to prevent this side effect of chemotherapy.


Subject(s)
DNA Glycosylases/metabolism , DNA Repair , Inflammation/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Retinal Degeneration/metabolism , Animals , Antineoplastic Agents, Alkylating/adverse effects , Apoptosis/drug effects , Apoptosis/genetics , Cell Death/drug effects , Cell Death/genetics , DNA Glycosylases/genetics , Female , Inflammation/genetics , Inflammation/pathology , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Necrosis , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Retinal Degeneration/chemically induced , Retinal Degeneration/genetics
15.
Science ; 363(6428)2019 02 15.
Article in English | MEDLINE | ID: mdl-30765538

ABSTRACT

Certain Escherichia coli strains residing in the human gut produce colibactin, a small-molecule genotoxin implicated in colorectal cancer pathogenesis. However, colibactin's chemical structure and the molecular mechanism underlying its genotoxic effects have remained unknown for more than a decade. Here we combine an untargeted DNA adductomics approach with chemical synthesis to identify and characterize a covalent DNA modification from human cell lines treated with colibactin-producing E. coli Our data establish that colibactin alkylates DNA with an unusual electrophilic cyclopropane. We show that this metabolite is formed in mice colonized by colibactin-producing E. coli and is likely derived from an initially formed, unstable colibactin-DNA adduct. Our findings reveal a potential biomarker for colibactin exposure and provide mechanistic insights into how a gut microbe may contribute to colorectal carcinogenesis.


Subject(s)
Carcinogenesis/metabolism , Colorectal Neoplasms/microbiology , Cyclopropanes/metabolism , DNA Adducts/metabolism , DNA Damage , Escherichia coli/metabolism , Gastrointestinal Microbiome , Mutagens/metabolism , Peptides/metabolism , Polyketides/metabolism , Alkylating Agents , Alkylation , Animals , Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Cyclopropanes/chemistry , Escherichia coli/pathogenicity , Germ-Free Life , HT29 Cells , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Mutagens/toxicity , Peptides/chemistry , Peptides/toxicity , Polyketides/chemistry , Polyketides/toxicity
16.
Cell Rep ; 26(6): 1668-1678.e4, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30726746

ABSTRACT

Cell survival is a critical and ubiquitous endpoint in biology. The broadly accepted colony formation assay (CFA) directly measures a cell's ability to divide; however, it takes weeks to perform and is incompatible with high-throughput screening (HTS) technologies. Here, we describe the MicroColonyChip, which exploits microwell array technology to create an array of colonies. Unlike the CFA, where visible colonies are counted by eye, using fluorescence microscopy, microcolonies can be analyzed in days rather than weeks. Using automated analysis of microcolony size distributions, the MicroColonyChip achieves comparable sensitivity to the CFA (and greater sensitivity than the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide [XTT] assay). Compared to CellTiter-Glo, the MicroColonyChip is as sensitive and also robust to artifacts caused by differences in initial cell seeding density. We demonstrate efficacy via studies of radiosensitivity and chemosensitivity and show that the approach is amenable to multiplexing. We conclude that the MicroColonyChip is a rapid and automated alternative for cell survival quantitation.


Subject(s)
Aflatoxin B1/toxicity , Antineoplastic Agents, Alkylating/pharmacology , Biological Assay/instrumentation , Carmustine/pharmacology , Gamma Rays/adverse effects , Microchip Analytical Procedures , Cell Count , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/physiology , Fibroblasts/radiation effects , HeLa Cells , Hep G2 Cells , Humans , Lymphocytes/cytology , Lymphocytes/drug effects , Lymphocytes/physiology , Lymphocytes/radiation effects
17.
Science ; 362(6416): 748-749, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30442790

Subject(s)
Inflammation , Humans
18.
DNA Repair (Amst) ; 68: 25-33, 2018 08.
Article in English | MEDLINE | ID: mdl-29929044

ABSTRACT

It is well established that inflammation leads to the creation of potent DNA damaging chemicals, including reactive oxygen and nitrogen species. Nitric oxide can react with glutathione to create S-nitrosoglutathione (GSNO), which can in turn lead to S-nitrosated proteins. Of particular interest is the impact of GSNO on the function of DNA repair enzymes. The base excision repair (BER) pathway can be initiated by the alkyl-adenine DNA glycosylase (AAG), a monofunctional glycosylase that removes methylated bases. After base removal, an abasic site is formed, which then gets cleaved by AP endonuclease and processed by downstream BER enzymes. Interestingly, using the Fluorescence-based Multiplexed Host Cell Reactivation Assay (FM-HCR), we show that GSNO actually enhances AAG activity, which is consistent with the literature. This raised the possibility that there might be imbalanced BER when cells are challenged with a methylating agent. To further explore this possibility, we confirmed that GSNO can cause AP endonuclease to translocate from the nucleus to the cytoplasm, which might further exacerbate imbalanced BER by increasing the levels of AP sites. Analysis of abasic sites indeed shows GSNO induces an increase in the level of AP sites. Furthermore, analysis of DNA damage using the CometChip (a higher throughput version of the comet assay) shows an increase in the levels of BER intermediates. Finally, we found that GSNO exposure is associated with an increase in methylation-induced cytotoxicity. Taken together, these studies support a model wherein GSNO increases BER initiation while processing of AP sites is decreased, leading to a toxic increase in BER intermediates. This model is also supported by additional studies performed in our laboratory showing that inflammation in vivo leads to increased large-scale sequence rearrangements. Taken together, this work provides new evidence that inflammatory chemicals can drive cytotoxicity and mutagenesis via BER imbalance.


Subject(s)
DNA Adducts/metabolism , DNA Repair/drug effects , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Animals , Cells, Cultured , DNA Damage , DNA Glycosylases/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , Mice , Nitrosation , Protein Transport , S-Nitrosoglutathione/chemistry
19.
Nat Med ; 24(5): 556-562, 2018 05.
Article in English | MEDLINE | ID: mdl-29736026

ABSTRACT

ARID1A (the AT-rich interaction domain 1A, also known as BAF250a) is one of the most commonly mutated genes in cancer1,2. The majority of ARID1A mutations are inactivating mutations and lead to loss of ARID1A expression 3 , which makes ARID1A a poor therapeutic target. Therefore, it is of clinical importance to identify molecular consequences of ARID1A deficiency that create therapeutic vulnerabilities in ARID1A-mutant tumors. In a proteomic screen, we found that ARID1A interacts with mismatch repair (MMR) protein MSH2. ARID1A recruited MSH2 to chromatin during DNA replication and promoted MMR. Conversely, ARID1A inactivation compromised MMR and increased mutagenesis. ARID1A deficiency correlated with microsatellite instability genomic signature and a predominant C>T mutation pattern and increased mutation load across multiple human cancer types. Tumors formed by an ARID1A-deficient ovarian cancer cell line in syngeneic mice displayed increased mutation load, elevated numbers of tumor-infiltrating lymphocytes, and PD-L1 expression. Notably, treatment with anti-PD-L1 antibody reduced tumor burden and prolonged survival of mice bearing ARID1A-deficient but not ARID1A-wild-type ovarian tumors. Together, these results suggest ARID1A deficiency contributes to impaired MMR and mutator phenotype in cancer, and may cooperate with immune checkpoint blockade therapy.


Subject(s)
Immunotherapy , Mutation/genetics , Neoplasms/genetics , Neoplasms/immunology , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Transcription Factors/deficiency , Transcription Factors/genetics , Animals , Cell Line, Tumor , DNA Mismatch Repair , DNA-Binding Proteins , Female , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred C57BL , MutS Homolog 2 Protein/metabolism , Protein Binding
20.
Lancet ; 391(10119): 462-512, 2018 02 03.
Article in English | MEDLINE | ID: mdl-29056410
SELECTION OF CITATIONS
SEARCH DETAIL
...