Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Immunology ; 172(1): 144-162, 2024 May.
Article in English | MEDLINE | ID: mdl-38361249

ABSTRACT

Macrophages expressing group V phospholipase A2 (Pla2g5) release the free fatty acid (FFA) linoleic acid (LA), potentiating lung type 2 inflammation. Although Pla2g5 and LA increase in viral infections, their role remains obscure. We generated Pla2g5flox/flox mice, deleted Pla2g5 by using the Cx3cr1cre transgene, and activated bone marrow-derived macrophages (BM-Macs) with poly:IC, a synthetic double-stranded RNA that triggers a viral-like immune response, known Pla2g5-dependent stimuli (IL-4, LPS + IFNγ, IL-33 + IL-4 + GM-CSF) and poly:IC + LA followed by lipidomic and transcriptomic analysis. Poly:IC-activated Pla2g5flox/flox;Cx3cr1cre/+ BM-Macs had downregulation of major bioactive lipids and critical enzymes producing those bioactive lipids. In addition, AKT phosphorylation was lower in poly:IC-stimulated Pla2g5flox/flox;Cx3cr1cre/+ BM-Macs, which was not restored by adding LA to poly:IC-stimulated BM-Macs. Consistently, Pla2g5flox/flox;Cx3cr1cre/+ mice had diminished poly:IC-induced lung inflammation, including inflammatory macrophage proliferation, while challenging Pla2g5flox/flox;Cx3cr1cre/+ mice with poly:IC + LA partially restored lung inflammation and inflammatory macrophage proliferation. Finally, mice lacking FFA receptor-1 (Ffar1)-null mice had reduced poly:IC-induced lung cell recruitment and tissue macrophage proliferation, not corrected by LA. Thus, Pla2g5 contributes to poly:IC-induced lung inflammation by regulating inflammatory macrophage proliferation and LA/Ffar1-mediated lung cell recruitment and tissue macrophage proliferation.


Subject(s)
Linoleic Acid , Pneumonia , Animals , Mice , Cell Proliferation , Interleukin-4/metabolism , Linoleic Acid/metabolism , Lung , Macrophages
2.
J Allergy Clin Immunol ; 151(6): 1536-1549, 2023 06.
Article in English | MEDLINE | ID: mdl-36804595

ABSTRACT

BACKGROUND: Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a type 2 (T2) inflammatory disease associated with an increased number of airway basal cells (BCs). Recent studies have identified transcriptionally distinct BCs, but the molecular pathways that support or inhibit human BC proliferation and differentiation are largely unknown. OBJECTIVE: We sought to determine the role of T2 cytokines in regulating airway BCs. METHODS: Single-cell and bulk RNA sequencing of sinus and lung airway epithelial cells was analyzed. Human sinus BCs were stimulated with IL-4 and IL-13 in the presence and absence of inhibitors of IL-4R signaling. Confocal analysis of human sinus tissue and murine airway was performed. Murine BC subsets were sorted for RNA sequencing and functional assays. Fate labeling was performed in a murine model of tracheal injury and regeneration. RESULTS: Two subsets of BCs were found in human and murine respiratory mucosa distinguished by the expression of basal cell adhesion molecule (BCAM). BCAM expression identifies airway stem cells among P63+KRT5+NGFR+ BCs. In the sinonasal mucosa, BCAMhi BCs expressing TSLP, IL33, CCL26, and the canonical BC transcription factor TP63 are increased in patients with CRSwNP. In cultured BCs, IL-4/IL-13 increases the expression of BCAM and TP63 through an insulin receptor substrate-dependent signaling pathway that is increased in CRSwNP. CONCLUSIONS: These findings establish BCAM as a marker of airway stem cells among the BC pool and demonstrate that airway epithelial remodeling in T2 inflammation extends beyond goblet cell metaplasia to the support of a BC stem state poised to perpetuate inflammation.


Subject(s)
Nasal Polyps , Rhinitis , Sinusitis , Humans , Animals , Mice , Receptor, Insulin/metabolism , Interleukin-13/metabolism , Interleukin-4/metabolism , Inflammation/metabolism , Sinusitis/metabolism , Epithelial Cells/metabolism , Signal Transduction , Chronic Disease , Nasal Polyps/metabolism , Rhinitis/metabolism
3.
J Exp Med ; 218(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-32946563

ABSTRACT

Murine mast cells (MCs) contain two lineages: inducible bone marrow-derived mucosal MCs (MMCs) and constitutive embryonic-derived connective tissue MCs (CTMCs). Here, we use RNA sequencing, flow cytometry, and genetic deletion in two allergic lung inflammation models to define these two lineages. We found that inducible MCs, marked by ß7 integrin expression, are highly distinct from airway CTMCs at rest and during inflammation and unaffected by targeted CTMC deletion. ß7High MCs expand and mature during lung inflammation as part of a TGF-ß-inducible transcriptional program that includes the MMC-associated proteases Mcpt1 and Mcpt2, the basophil-associated protease Mcpt8, granule components, and the epithelial-binding αE integrin. In vitro studies using bone marrow-derived MCs (BMMCs) identified a requirement for SCF in this this TGF-ß-mediated development and found that epithelial cells directly elicit TGF-ß-dependent BMMC up-regulation of mMCP-1 and αE integrin. Thus, our findings characterize the expansion of a distinct inducible MC subset in C57BL/6 mice and highlight the potential for epithelium to direct MMC development.


Subject(s)
Asthma/immunology , Bone Marrow Cells/immunology , Cell Lineage/immunology , Mast Cells/immunology , Respiratory Mucosa/immunology , Animals , Asthma/embryology , Asthma/genetics , Asthma/pathology , Bone Marrow Cells/pathology , Cell Lineage/genetics , Integrin beta Chains/genetics , Integrin beta Chains/immunology , Mast Cells/pathology , Mice , Mice, Transgenic , Respiratory Mucosa/embryology , Respiratory Mucosa/pathology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology , Tryptases/genetics , Tryptases/immunology
4.
Biomolecules ; 11(1)2020 12 29.
Article in English | MEDLINE | ID: mdl-33383652

ABSTRACT

Macrophages activated by Interleukin (IL)-4 (M2) or LPS+ Interferon (IFN)γ (M1) perform specific functions respectively in type 2 inflammation and killing of pathogens. Group V phospholipase A2 (Pla2g5) is required for the development and functions of IL-4-activated macrophages and phagocytosis of pathogens. Pla2g5-generated bioactive lipids, including lysophospholipids (LysoPLs), fatty acids (FAs), and eicosanoids, have a role in many diseases. However, little is known about their production by differentially activated macrophages. We performed an unbiased mass-spectrometry analysis of phospholipids (PLs), LysoPLs, FAs, and eicosanoids produced by Wild Type (WT) and Pla2g5-null IL-4-activated bone marrow-derived macrophages (IL-4)BM-Macs (M2) and (LPS+IFNγ)BM-Macs (M1). Phosphatidylcholine (PC) was preferentially metabolized in (LPS+IFNγ)BM-Macs and Phosphatidylethanolamine (PE) in (IL-4)BM-Macs, with Pla2g5 contributing mostly to metabolization of selected PE molecules. While Pla2g5 produced palmitic acid (PA) in (LPS+IFNγ)BM-Macs, the absence of Pla2g5 increased myristic acid (MA) in (IL-4)BM-Macs. Among eicosanoids, Prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2) were significantly reduced in (IL-4)BM-Macs and (LPS+IFNγ)BM-Macs lacking Pla2g5. Instead, the IL-4-induced increase in 20-carboxy arachidonic acid (20CooH AA) was dependent on Pla2g5, as was the production of 12-hydroxy-heptadecatrienoic acid (12-HHTrE) in (LPS+IFNγ)BM-Macs. Thus, Pla2g5 contributes to PE metabolization, PGE2 and PGD2 production independently of the type of activation, while in (IL-4)BM-Macs, Pla2g5 regulates selective lipid pathways and likely novel functions.


Subject(s)
Group V Phospholipases A2/immunology , Macrophage Activation , Macrophages/immunology , Phospholipids/immunology , Animals , Cells, Cultured , Humans , Inflammation/immunology , Interleukin-4/immunology , Mice , Phospholipids/analysis
5.
J Allergy Clin Immunol ; 143(3): 1047-1057.e8, 2019 03.
Article in English | MEDLINE | ID: mdl-30017554

ABSTRACT

BACKGROUND: Classical FcεRI-induced mast cell (MC) activation causes synthesis of arachidonic acid (AA)-derived eicosanoids (leukotriene [LT] C4, prostaglandin [PG] D2, and thromboxane A2), which mediate vascular leak, bronchoconstriction, and effector cell chemotaxis. Little is known about the significance and regulation of eicosanoid generation in response to nonclassical MC activation mechanisms. OBJECTIVES: We sought to determine the regulation and significance of MC-derived eicosanoids synthesized in response to IL-33, a cytokine critical to innate type 2 immunity. METHODS: We used an ex vivo model of mouse bone marrow-derived mast cells and an IL-33-dependent in vivo model of aspirin-exacerbated respiratory disease (AERD). RESULTS: IL-33 potently liberates AA and elicits LTC4, PGD2, and thromboxane A2 production by bone marrow-derived mast cells. Unexpectedly, the constitutive function of COX-1 is required for IL-33 to activate group IVa cytosolic phospholipase A2 with consequent AA release for synthesis of all eicosanoids, including CysLTs. In contrast, COX-1 was dispensable for FcεRI-driven CysLT production. Inhibition of COX-1 prevented IL-33-induced phosphorylation of extracellular signal-related kinase, an upstream effector of cytosolic phospholipase A2, which was restored by exogenous PGH2, implying that the effects of COX-1 required its catalytic function. Administration of a COX-1-selective antagonist to mice completely prevented the generation of both PGD2 and LTC4 in a model of AERD in which MC activation is IL-33 driven. CONCLUSIONS: MC-intrinsic COX-1 amplifies IL-33-induced activation in the setting of innate type 2 immunity and might help explain the phenomenon of therapeutic desensitization to aspirin by nonselective COX inhibitors in patients with AERD.


Subject(s)
Asthma, Aspirin-Induced/immunology , Cyclooxygenase 1/immunology , Extracellular Signal-Regulated MAP Kinases/immunology , Interleukin-33/immunology , Mast Cells/immunology , Membrane Proteins/immunology , Animals , Cells, Cultured , Cyclooxygenase 2/immunology , Cyclooxygenase Inhibitors/pharmacology , Eicosanoids/immunology , Mice, Inbred C57BL , Mice, Knockout , Phospholipases A2, Cytosolic/immunology
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(6): 819-826, 2019 06.
Article in English | MEDLINE | ID: mdl-30308324

ABSTRACT

Group V Phospholipase A2 (Pla2g5) is a member of the PLA2 family of lipid-generating enzymes. It is expressed in immune and non-immune cell types and is inducible during several pathologic conditions serving context-specific functions. In this review, we recapitulate the protective and detrimental functions of Pla2g5 investigated through preclinical and translational approaches. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.


Subject(s)
Phospholipases A2/metabolism , Animals , Humans , Immunity/immunology , Phospholipases A2/immunology
7.
J Allergy Clin Immunol ; 141(4): 1182-1190, 2018 04.
Article in English | MEDLINE | ID: mdl-29477727

ABSTRACT

Type 2 immunopathology is a cardinal feature of allergic diseases and involves cooperation between adaptive immunity and innate effector responses. Virtually all cell types relevant to this pathology generate leukotriene and/or prostaglandin mediators that derive from arachidonic acid, express receptors for such mediators, or both. Recent studies highlight prominent functions for these mediators in communication between the innate and adaptive immune systems, as well as amplification or suppression of type 2 effector responses. This review focuses on recent advances and insights, and highlights existing and potential therapeutic applications of drugs that target these mediators or their receptors, with a special emphasis on their regulation of the innate and adaptive lymphocytes relevant to type 2 immunopathology.


Subject(s)
Adaptive Immunity , Immune System Diseases/immunology , Leukotrienes/immunology , Prostaglandins/immunology , Th2 Cells/immunology , Animals , Humans , Immune System Diseases/pathology , Th2 Cells/pathology
8.
J Biol Chem ; 292(20): 8195-8206, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28341741

ABSTRACT

When activated through toll-like receptors (TLRs), macrophages generate IL-33, an IL-1 family member that induces innate immune responses through ST2 signaling. LPS, a TLR4 ligand, induces macrophages to generate prostaglandin E2 (PGE2) through inducible COX-2 and microsomal PGE2 synthase 1 (mPGES-1) (1). We demonstrate that IL-33 production by bone marrow-derived murine macrophages (bmMFs) requires the generation of endogenous PGE2 and the intrinsic expression of EP2 receptors to amplify NF-κB-dependent, LPS-induced IL-33 expression via exchange protein activated by cAMP (EPAC). Compared with WT cells, bmMFs lacking either mPGES-1 or EP2 receptors displayed reduced LPS-induced IL-33 levels. A selective EP2 agonist and, to a lesser extent, EP4 receptor agonist potentiated LPS-induced IL-33 generation from both mPGES-1-null and WT bmMFs, whereas EP1 and EP3 receptor agonists were inactive. The effects of PGE2 depended on cAMP, were mimicked by an EPAC-selective agonist, and were attenuated by EPAC-selective antagonism and knockdown. LPS-induced p38 MAPK and NF-κB activations were necessary for both IL-33 production and PGE2 generation, and exogenous PGE2 partly reversed the suppression of IL-33 production caused by p38 MAPK and NF-κB inhibition. Mice lacking mPGES-1 showed lower IL-33 levels and attenuated lung inflammation in response to repetitive Alternaria inhalation challenges. Cumulatively, our data demonstrate that endogenous PGE2, EP2 receptors, and EPAC are prerequisites for maximal LPS-induced IL-33 expression and that exogenous PGE2 can amplify IL-33 production via EP2 and EP4 receptors. The ubiquitous induction of mPGES-1-dependent PGE2 may be crucial for innate immune system activation during various IL-33 driven pathologic disorders.


Subject(s)
Cyclic AMP/metabolism , Dinoprostone , Guanine Nucleotide Exchange Factors/metabolism , Interleukin-33/metabolism , Macrophages/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Animals , Cyclic AMP/genetics , Dinoprostone/metabolism , Dinoprostone/pharmacology , Guanine Nucleotide Exchange Factors/genetics , Interleukin-33/genetics , Lipopolysaccharides/toxicity , Mice , Mice, Mutant Strains , Prostaglandin-E Synthases/genetics , Prostaglandin-E Synthases/metabolism , Receptors, Prostaglandin E, EP2 Subtype/genetics , Receptors, Prostaglandin E, EP4 Subtype/genetics
9.
Nat Commun ; 6: 6049, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25586702

ABSTRACT

Intercellular adhesion molecules (ICAMs) belong to the immunoglobulin superfamily and participate in diverse cellular processes including host-pathogen interactions. ICAM-1 is expressed on various cell types including macrophages, whereas ICAM-4 is restricted to red blood cells. Here we report the identification of an 11-kDa synthetic protein, M5, that binds to human ICAM-1 and ICAM-4, as shown by in vitro interaction studies, surface plasmon resonance and immunolocalization. M5 greatly inhibits the invasion of macrophages and erythrocytes by Mycobacterium tuberculosis and Plasmodium falciparum, respectively. Pharmacological and siRNA-mediated inhibition of ICAM-1 expression also results in reduced M. tuberculosis invasion of macrophages. ICAM-4 binds to P. falciparum merozoites, and the addition of recombinant ICAM-4 to parasite cultures blocks invasion of erythrocytes by newly released merozoites. Our results indicate that ICAM-1 and ICAM-4 play roles in host cell invasion by M. tuberculosis and P. falciparum, respectively, either as receptors or as crucial accessory molecules.


Subject(s)
Cell Adhesion Molecules/metabolism , Host-Pathogen Interactions , Intercellular Adhesion Molecule-1/metabolism , Mycobacterium tuberculosis/physiology , Plasmodium falciparum/physiology , Animals , Cell Line , Erythrocytes/parasitology , Female , Humans , Intercellular Adhesion Molecule-1/chemistry , Malaria, Falciparum/parasitology , Merozoites/physiology , Mice, Inbred BALB C , Mycobacterium tuberculosis/genetics , Protein Binding , Protein Interaction Mapping , Protein Multimerization , Protein Structure, Tertiary , Tuberculosis/microbiology , Two-Hybrid System Techniques
10.
FEBS Open Bio ; 4: 735-40, 2014.
Article in English | MEDLINE | ID: mdl-25349777

ABSTRACT

Tuberculosis (TB) is a huge global burden, with new and resistant strains emerging at an alarming rate, necessitating an urgent need for a new class of drug candidates. Here, we report that SL3, a novel 33-amino acid peptide, causes debilitating effects on mycobacterial morphology. Treatment with SL3 drastically inhibits the growth of Mycobacterium tuberculosis in vitro as well as in a pre-clinical mouse model for M.tb infection. Microarray analysis of SL3-expressing strain demonstrates wide-scale transcriptional disruption in M.tb. We therefore believe that SL3 and similar peptides may herald a new approach towards discovering new molecules for TB therapy.

11.
BMC Infect Dis ; 14: 355, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24985537

ABSTRACT

BACKGROUND: Tuberculosis (TB) is one of the most prevalent infectious diseases affecting millions worldwide. The currently available anti-TB drugs and vaccines have proved insufficient to contain this scourge, necessitating an urgent need for identification of novel drug targets and therapeutic strategies. The disruption of crucial protein-protein interactions, especially those that are responsible for virulence in Mycobacterium tuberculosis - for example the ESAT-6:CFP10 complex - are a worthy pursuit in this direction. METHODS: We therefore sought to improvise a method to attenuate M. tuberculosis while retaining the latter's antigenic properties. We screened peptide libraries for potent ESAT-6 binders capable of dissociating CFP10 from ESAT-6. We assessed the disruption by a peptide named HCL2, of the ESAT-6:CFP10 complex and studied its effects on mycobacterial survival and virulence. RESULTS: We found that HCL2, derived from the human cytochrome c oxidase subunit 3 (COX3) protein, disrupts ESAT-6:CFP10 complex, binds ESAT-6 potently, disintegrates bacterial cell wall and inhibits extracellular as well as intracellular mycobacterial growth. In addition, an HCL2 expressing M. tuberculosis strain induces both Th1 and Th17 host protective responses. CONCLUSIONS: Disruption of ESAT-6:CFP10 association could, therefore, be an alternate method for attenuating M. tuberculosis, and a possible route towards future vaccine generation.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/microbiology , Animals , Female , Humans , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/pathogenicity , Peptide Fragments/pharmacology , Virulence
12.
PLoS One ; 8(7): e69949, 2013.
Article in English | MEDLINE | ID: mdl-23894563

ABSTRACT

BACKGROUND: The search for molecules against Mycobacterium tuberculosis is urgent. The mechanisms facilitating the intra-macrophage survival of Mycobacterium tuberculosis are as yet not entirely understood. However, there is evidence showing the involvement of host cell cytoskeleton in every step of establishment and persistence of mycobacterial infection. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that expression of ARPC4, a subunit of the Actin related protein 2/3 (Arp2/3) protein complex, severely affects the pathogen's growth. TEM studies display shedding of the mycobacterial outer-coat. Furthermore, in infected macrophages, mycobacteria expressing ARPC4 were cleared off at a much faster rate, and were unable to mount a pro-inflammatory cytokine response. The translocation of ARPC4-expressing mycobacteria to the lysosome of the infected macrophage was also impaired. Additionally, the ARPC4 subunit was shown to interact with Rv1626, an essential secretory mycobacterial protein. Real-time PCR analysis showed that upon expression of ARPC4 in mycobacteria, Rv1626 expression is downregulated as much as six-fold. Rv1626 was found to also interact with mammalian cytoskeleton protein, Arp2/3, and enhance the rate of actin polymerization. CONCLUSIONS/SIGNIFICANCE: With crystal structures for Rv1626 and ARPC4 subunit already known, our finding lays out the effect of a novel molecule on mycobacteria, and represents a viable starting point for developing potent peptidomimetics.


Subject(s)
Actin-Related Protein 2-3 Complex/chemistry , Actins/genetics , Gene Expression Regulation , Immune Tolerance , Macrophages/immunology , Mycobacterium tuberculosis/growth & development , Protein Subunits/genetics , Actins/chemistry , Actins/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Survival , Culture Techniques , Gene Expression , Humans , Macrophages/cytology , Male , Mice , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Protein Multimerization , Protein Structure, Quaternary , Protein Subunits/chemistry
13.
Genet Mol Biol ; 35(3): 610-3, 2012 Jul.
Article in English | MEDLINE | ID: mdl-23055800

ABSTRACT

Diacylglycerol O-acyltransferase 1 (DGAT1) is a microsomal enzyme that catalyzes the final step of triglyceride synthesis. The DGAT1 gene is a strong functional candidate for determining milk fat content in cattle. In this work, we used PCR-SSCP (polymerase chain reaction-single-strand conformation polymorphism) and DNA sequencing to examine polymorphism in the region spanning exon 7 to exon 9 of the DGAT1 gene in Murrah and Pandharpuri buffaloes. Three alleles (A, B and C) and four novel single-nucleotide polymorphisms were identified in the buffalo DGAT1 gene. The frequencies of the alleles differed between the two buffalo breeds, with allele C being present in Murrah but not in Pandharpuri buffalo. The allele variation detected in this work may influence DGAT1 expression and function. The results described here could be useful in examining the association between the DGAT1 gene and milk traits in buffalo.

14.
PLoS One ; 6(11): e27503, 2011.
Article in English | MEDLINE | ID: mdl-22087330

ABSTRACT

BACKGROUND: Protein-protein interactions play a crucial role in enabling a pathogen to survive within a host. In many cases the interactions involve a complex of proteins rather than just two given proteins. This is especially true for pathogens like M. tuberculosis that are able to successfully survive the inhospitable environment of the macrophage. Studying such interactions in detail may help in developing small molecules that either disrupt or augment the interactions. Here, we describe the development of an E. coli based bacterial three-hybrid system that can be used effectively to study ternary protein complexes. METHODOLOGY/PRINCIPAL FINDINGS: The protein-protein interactions involved in M. tuberculosis pathogenesis have been used as a model for the validation of the three-hybrid system. Using the M. tuberculosis RD1 encoded proteins CFP10, ESAT6 and Rv3871 for our proof-of-concept studies, we show that the interaction between the proteins CFP10 and Rv3871 is strengthened and stabilized in the presence of ESAT6, the known heterodimeric partner of CFP10. Isolating peptide candidates that can disrupt crucial protein-protein interactions is another application that the system offers. We demonstrate this by using CFP10 protein as a disruptor of a previously established interaction between ESAT6 and a small peptide HCL1; at the same time we also show that CFP10 is not able to disrupt the strong interaction between ESAT6 and another peptide SL3. CONCLUSIONS/SIGNIFICANCE: The validation of the three-hybrid system paves the way for finding new peptides that are stronger binders of ESAT6 compared even to its natural partner CFP10. Additionally, we believe that the system offers an opportunity to study tri-protein complexes and also perform a screening of protein/peptide binders to known interacting proteins so as to elucidate novel tri-protein complexes.


Subject(s)
Bacterial Proteins/metabolism , Mycobacterium tuberculosis/chemistry , Protein Interaction Mapping/methods , Antigens, Bacterial/metabolism , Methods , Multiprotein Complexes/metabolism , Mycobacterium tuberculosis/metabolism , Protein Binding
15.
PLoS One ; 4(11): e7615, 2009 Nov 10.
Article in English | MEDLINE | ID: mdl-19901982

ABSTRACT

BACKGROUND: The secretory proteins of Mycobacterium tuberculosis (M. tuberculosis) have been known to be involved in the virulence, pathogenesis as well as proliferation of the pathogen. Among this set, many proteins have been hypothesized to play a critical role at the genesis of the onset of infection, the primary site of which is invariably the human lung. METHODOLOGY/PRINCIPAL FINDINGS: During our efforts to isolate potential binding partners of key secretory proteins of M. tuberculosis from a human lung protein library, we isolated peptides that strongly bound the virulence determinant protein Esat6. All peptides were less than fifty amino acids in length and the binding was confirmed by in vivo as well as in vitro studies. Curiously, we found all three binders to be unusually rich in phenylalanine, with one of the three peptides a short fragment of the human cytochrome c oxidase-3 (Cox-3). The most accessible of the three binders, named Hcl1, was shown also to bind to the Mycobacterium smegmatis (M. smegmatis) Esat6 homologue. Expression of hcl1 in M. tuberculosis H37Rv led to considerable reduction in growth. Microarray analysis showed that Hcl1 affects a host of key cellular pathways in M. tuberculosis. In a macrophage infection model, the sets expressing hcl1 were shown to clear off M. tuberculosis in much greater numbers than those infected macrophages wherein the M. tuberculosis was not expressing the peptide. Transmission electron microscopy studies of hcl1 expressing M. tuberculosis showed prominent expulsion of cellular material into the matrix, hinting at cell wall damage. CONCLUSIONS/SIGNIFICANCE: While the debilitating effects of Hcl1 on M. tuberculosis are unrelated and not because of the peptide's binding to Esat6-as the latter is not an essential protein of M. tuberculosis-nonetheless, further studies with this peptide, as well as a closer inspection of the microarray data may shed important light on the suitability of such small phenylalanine-rich peptides as potential drug-like molecules against this pathogen.


Subject(s)
Antigens, Bacterial/chemistry , Bacterial Proteins/chemistry , Lung/microbiology , Mycobacterium tuberculosis/pathogenicity , Peptides/chemistry , Phenylalanine/chemistry , Cloning, Molecular , DNA, Complementary/metabolism , Electron Transport Complex IV/chemistry , Gene Expression Profiling , Gene Library , Genetic Vectors , Humans , Protein Array Analysis , Protein Binding , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...