Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 16(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37629930

ABSTRACT

The present analysis addresses the solidification and thermodynamic parameters involved during the solidification of aluminum (Al)-based alloys as presented in the literature using different systems viz., binary aluminum-boron (Al-B) and aluminum-titanium (Al-Ti) systems, ternary aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) systems, as well as taking into consideration the silicon-titanium-aluminide (Si-TiAl3) interaction in Al-based alloys containing Si. The analysis is supported by recent metallographic evidence obtained by the authors on A356.2 alloys. The sections on thermodynamic aspects cover the different models proposed concerning nucleation and growth on a newly formed Al grain. The value of the recalescence parameter reduces gradually with the increase in the Ti added. At a level of 0.20 wt%, this parameter becomes zero. If the concentration of grain refiner exceeds a certain amount, the grain size becomes minimal. Another parameter to be considered is the interaction between the grain refiner and traces of other metals in the base alloy. For example, Al-4%B can react with traces of Ti that may exist in the base alloy, leading to the reaction between boron and titanium to form titanium diboride (TiB2). Grain refinement is achieved primarily with TiB2 rather than aluminum diboride (AlB2), or both, depending on the Ti content in the given alloy.

2.
Materials (Basel) ; 16(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049162

ABSTRACT

The present article addresses solidification parameters, and includes analyses of the macrostructure and microstructure in the light of the results obtained from the thermal analysis, from which it is possible to conclude that undercooling (TS) and recalescence (TR) temperatures increase with the initial increase in titanium (Ti) concentration. If the concentration reaches approximately 0.25%, a rapid decrease in these temperatures is observed. Thereafter, the temperatures increase again with the further increase in Ti concentration, and eventually become constant. These temperatures also vary depending on the superheating and casting temperature. The ∆T parameter (i.e., TS - TR) decreases with the Ti concentration and, from a concentration of around 0.20% Ti, this parameter becomes zero. The grain size decreases with the Ti concentration. If the concentration exceeds about 0.20%, the grain size becomes the minimum. Another parameter to be considered is the interaction between the grain refiner and the traces of other metals in the base Al alloy. For example, Al-4%B can react with traces of Ti that may exist in the base alloy, leading to the reaction between boron (B) and Ti to form TiB2. Grain refinement is achieved primarily with TiB2 rather than AlB2, or both, depending on the Ti content in the given alloy.

3.
Materials (Basel) ; 16(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36903162

ABSTRACT

The main objective of this review is to analyze the equations proposed for expressing the effect of various parameters on porosity formation in aluminum-based alloys. These parameters include alloying elements, solidification rate, grain refining, modification, hydrogen content, as well as the applied pressure on porosity formation in such alloys. They are used to establish as precisely as possible a statistical model to describe the resulting porosity characteristics such as the percentage porosity and pore characteristics, as controlled by the chemical composition of the alloy, modification, grain refining, and the casting conditions. The measured parameters of percentage porosity, maximum pore area, average pore area, maximum pore length, and average pore length, which were obtained from statistical analysis, are discussed, and they are supported using optical micrographs, electron microscopic images of fractured tensile bars, as well as radiography. In addition, an analysis of the statistical data is presented. It should be noted that all alloys described were well degassed and filtered prior to casting.

4.
Materials (Basel) ; 16(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36837030

ABSTRACT

The present work was performed on three versions of a newly developed alloy coded T200 containing 6.5% Cu, 0.1% Fe, 0.45% Mg, and 0.18% Zr in addition to A319 and A356 alloys (grain refined and Sr-modified). Tensile bars were subjected to 13 different heat treatments prior to testing at either 25 °C or 250 °C. The tensile data were analyzed using the quality index method. The results obtained showed that, due to the high copper content in the T200 alloy coupled with proper grain refining, the alloy possesses the highest quality as well as improved resistance to softening when tested at 250 °C among the five alloys. The results also demonstrate the best heat treatment condition to maximize the use of the T200 alloy for automotive applications. Grain-refined alloy B, treated in the T6 temper and tested at 250 °C, exhibited the best combination of the four tensile parameters, i.e., UTS, YS, %El, and Q-values: 308 MPa, 304 MPa, 2.3%, and 352 MPa, respectively, which are comparable with those obtained from the 356 alloy: 309 MPa, 305 MPa, 2.8%, and 375 MPa in the same order.

5.
Materials (Basel) ; 16(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36770116

ABSTRACT

The present study was performed on a 6061-type alloy to examine the effects of minor additions (Si, Mn, Be, Sr) of the type of precipitated Fe-based intermetallics, in terms of Fe/Si ratios. All alloys were grain refined (0.15%Ti in the form of Al-5%Ti-1%B) to minimize hot tearing during casting. The effect of these intermetallics on the alloy tensile properties was also investigated. Tensile test bars were solutionized at 520 °C followed by quenching in warm water at 60 °C to avoid cracking. The quenched bars were aged at 175 °C for periods up to 100 h. Characterization of the formed intermetallics as well as phase precipitation were carried out using field emission scanning electron microscopy. In Be-treated alloys, α-Al8Fe2SiBe phase may precipitate along with α-Al15(Fe, Mn)3Si2 phase. In addition, Be results in fragmentation of the α-Fe phase when the alloy was Sr-modified, leading to better tensile properties, compared to those obtained from the base alloy under same conditions. It should be noted that this study does not promote the use of Be as it is a toxic element.

6.
Materials (Basel) ; 15(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35806637

ABSTRACT

The present work investigated the effect of aging treatment on the microstructure and tensile properties of an Al-2%Cu base alloy containing various additions of Zr and other alloying elements. Aging was carried out at temperatures of 180-300 °C for different aging times at each temperature. The tensile properties indicated that Zr additions improved the strength of the base alloy, especially at high Zr levels at 180 °C. At the 220 °C aging temperature, however, while Zr addition did not have a beneficial effect on the alloy strength, the ductility was found to improve. Zr-Ti combined additions had a significant effect on the microstructure of the base alloy, as the morphology of the α-Al grains transformed into a non-dendritic morphology, and the grain size decreased sharply. These effects were at their maximum at 180 °C and 0.5 wt% Zr addition. Moreover, the Zr-containing alloys aged at higher temperatures, such as 220 °C and 240 °C, maintained a noticeably higher level of strength over the base alloy aged at the same temperatures. Quality index charts based on the tensile test data also reflected an improvement in alloy quality and strength with Zr-Ti combined additions.

7.
Materials (Basel) ; 15(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35207873

ABSTRACT

The present study was undertaken to examine the effect of iron, manganese, copper and magnesium on the microstructural characteristics of Al-11%Si-2%Cu-Mg-based alloy referred to as 396 under different working conditions. The results show that strontium (Sr) has high affinity to react with magnesium (Mg), resulting in reduced effectiveness as eutectic silicon modifier or age hardening agent. In addition, Sr alters the sequence of the precipitation of the α-AlFeMnSi phase from post-eutectic to pro-eutectic which would harden the soft α-Aluminum matrix. The mechanism is still under investigation. The interactions between iron (Fe) and Mg and Sr-Mg result in the formation of serval dissolvable intermetallics during the solutionizing treatment such as ß-AlFeSi, π-AlFeMgSi and Q-AlMgSiCu phases. The study also emphasizes the role of modification and grain refining as well as intermetallics in porosity formation and hardness of samples aged in the temperature range 155-240 °C.

SELECTION OF CITATIONS
SEARCH DETAIL