Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(8): e28986, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681544

ABSTRACT

The performance of a Pelton wheel is influenced by the jet created by the nozzle. Therefore, a Computational Fluid Dynamics (CFD) simulation was proposed. In this study, the significant output parameters (outlet velocity, outlet pressure, and tangential force component) and input parameters (different pressure and spear locations) were examined. In addition, the influencing parameters and their contributing percentages to the performance of the Pelton wheel were calculated using different optimisation techniques such as Taguchi Design of Experiments (DoE), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Grey Relational Analysis (GRA) and Criteria Importance Through Intercriteria Correlation (CRITIC). The effect of input factors on the output response was examined with DoE, and the results show that the inlet pressure had the most significant impact (97.38%, 99.18%, and 97.38%, respectively, for all different spear sites with a 99% confidence level). In terms of preference values, the TOPSIS and GRA results are comparable (best ranks for simulation runs #24 and #25 and least ranks for simulations #2 and #3, respectively). The CRITIC results for the pressure parameter are in good agreement with the Taguchi ANOVA analysis. The last spear location (5 mm after the nozzle outlet), with an inlet pressure of 413685 Pa generated the best result when employing the TOPSIS and GRA techniques. The outlet pressure of the nozzle was found to have a significant impact on the flow pattern of the Pelton Wheel based on the analysis of the CRITIC, Taguchi, and CFD results.

2.
Heliyon ; 10(5): e26395, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439869

ABSTRACT

It is precarious to scrutinize the impacts of operational parameters on corrosion when choosing materials for the green diesel and automotive industries. This was the original study to showcase an optimization stratagem for abating corrosion rates (CRs) of automotive parts (APs) explicitly copper and brass in a biodiesel environment, adopting novel Response Surface Methodology (RSM) and Adaptive Neuro-Fuzzy Inference System (ANFIS).To model CRs, the RSM and ANFIS were utilized. The mechanical properties of APs were inspected, explicitly their hardness number and tensile strength, as well as their outward morphologies. The optimal CRs for copper and brass were 0.01656 mpy and 0.008189 mpy at a B 3.91 biodiesel/diesel blend and 240.9-h exposure. The ANFIS model had a higher coefficient of determination and lower values of root mean squared errors (RMSE), mean average error (MAE), and average absolute deviation (AAD) when compared to the RSM model; this authenticates the ANFIS model's superiority for predicting CRs of copper and brass. The tensile strength of brass was greater than that of copper, while the latter had a higher hardness number. The information, model, and correlations can assist APS in mitigating and slaving over for the corrosiveness of APs while utilizing green diesel.

3.
Arch Comput Methods Eng ; 29(2): 1311-1337, 2022.
Article in English | MEDLINE | ID: mdl-34393475

ABSTRACT

Mathematical models have assisted in describing the transmission and propagation dynamics of various viral diseases like MERS, measles, SARS, and Influenza; while the advanced computational technique is utilized in the epidemiology of viral diseases to examine and estimate the influences of interventions and vaccinations. In March 2020, the World Health Organization (WHO) has declared the COVID-19 as a global pandemic and the rate of morbidity and mortality triggers unprecedented public health crises throughout the world. The mathematical models can assist in improving the interventions, key transmission parameters, public health agencies, and countermeasures to mitigate this pandemic. Besides, the mathematical models were also used to examine the characteristics of epidemiological and the understanding of the complex transmission mechanism. Our literature study found that there were still some challenges in mathematical modeling for the case of ecology, genetics, microbiology, and pathology pose; also, some aspects like political and societal issues and cultural and ethical standards are hard to be characterized. Here, the recent mathematical models about COVID-19 and their prominent features, applications, limitations, and future perspective are discussed and reviewed. This review can assist in further improvement of mathematical models that will consider the current challenges of viral diseases.

SELECTION OF CITATIONS
SEARCH DETAIL