Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36772407

ABSTRACT

Long-wave infrared (LWIR) emissions of laser-induced plasma on solid potassium chloride and acetaminophen tablet surfaces were studied using both a one-dimensional (1-D) linear array detection system and, for the first time, a two-dimensional (2-D) focal plane array (FPA) detection system. Both atomic and molecular infrared emitters in the vicinity of the plasma were identified by analyzing the detected spectral signatures in the infrared region. Time- and space-resolved long-wave infrared emissions were also studied to assess the temporal and spatial behaviors of atomic and molecular emitters in the plasma. These pioneer temporal and spatial investigations of infrared emissions from laser-induced plasma would be valuable to the modeling of plasma evolutions and the advances of the novel LWIR laser-induced breakdown spectroscopy (LIBS). When integrated both temporally (≥200 µs) and spatially using a 2-D FPA detector, the observed intensities and signal-to-noise-ratio (SNR) of single-shot LWIR LIBS signature emissions from intact molecules were considerably enhanced (e.g., with enhancement factors up to 16 and 3.76, respectively, for a 6.62 µm band of acetaminophen molecules) and, in general, comparable to those from the atomic emitters. Pairing LWIR LIBS with conventional ultraviolet-visible-near infrared (UV/Vis/NIR) LIBS, a simultaneous UV/Vis/NIR + LWIR LIBS detection system promises unprecedented capability of in situ, real-time, and stand-off investigation of both atomic and molecular target compositions to detect and characterize a range of chemistries.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 294: 122536, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-36841136

ABSTRACT

Vibration-rotation signatures of intact water and complex organic molecules in vapor phase were detected, identified, and mode-assigned in the long-wave infrared emissions of laser-induced plasma. Time resolved long-wave infrared emissions were also studied to assess the temporal behaviors of these gaseous molecular emitters. The temperatures of these molecular vapors in the hot and transient vapor-plasma plume of the laser-induced plasma were estimated to be well above room temperatures during their existence. The temperatures of the water vapors in the vapor-plasma plume were found to be evolving with time and ranging from > 2700 K at 10 µs to âˆ¼ 1500 K at 200 µs after plasma initiations using HITRAN/HAPI based molecular spectral analysis. The observations in the present study comprise (to our knowledge) the first direct evidence of hot water and intact complex organic gas molecules in the vicinity of the laser-induced plasma. The findings presented in this work serve as an important step forward in improving the understanding of the thermodynamic characteristics (such as temperatures and phases) of intact complex molecules in a hot and intricate system such as the vapor-plasma plume of a laser-induced plasma, which is essential in both fundamental studies of plasmas and of laser-induced plasma based analytical applications.

3.
MethodsX ; 9: 101647, 2022.
Article in English | MEDLINE | ID: mdl-35308253

ABSTRACT

Laser Induced Breakdown Spectroscopy (LIBS) in the Ultra Violet/Visible/Near-IR (UVN) spectral range is a powerful analytical tool that facilitates the interpretation of Raman spectroscopic data by providing additional details in elemental chemistry. To acquire the complete information of molecular vibrations for more accurate and precise chemical bonding and structural analysis, an ideal in situ optical sensing facility should be able to rapidly probe the broad vibrational dipole and polarizability responses of molecules by acquiring both Raman scattering and mid-IR emission spectroscopic signatures. Recently, the research team at Brimrose has developed a novel optical technology, Long-Wave IR (LWIR) LIBS. Critical experimental approaches were made to capture the infrared molecular emission signatures from vibrationally excited intact samples excited by laser-induced plasma in a LIBS event. LWIR LIBS is the only fieldable mid-IR emission spectroscopic technique to-date that that offers the same instrumental and analytical advantages of both UVN LIBS and Raman spectroscopy in in-situ stand-off field applications and can perform rapid and comprehensive molecular structure analysis without any sample-preparation.•A single excitation laser pulse is used to trigger both UVN and LWIR spectrometers simultaneously.•Time-resolved UVN-LWIR LIBS measurements showed the evolution of both atomic and molecular signature emissions of target compounds in the laser-induced plasma.•The technique was applied to the characterization of mineral and organic compounds in planetary analog samples.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120205, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34332244

ABSTRACT

Raman spectroscopy and laser induced breakdown spectroscopy (LIBS) are complementary techniques that together can provide a comprehensive characterization of geologic environments. For landed missions with constrained access to target materials on other planetary bodies, discerning signatures of life and habitability can be daunting, particularly where the preservation of organic compounds that contain the building blocks of life is limited. The main challenge facing any spectroscopy measurements of natural samples is the complicated spectra that often contain signatures for multiple components, particularly in rocks that are composed of several minerals with surfaces colonized by microbes. The goal of this study was to use the combination of Raman spectroscopy and LIBS to discern different environmental regimes based on the identification of minerals and biomolecules in rocks and sediments. Iceland is a terrestrial volcano-glacial location that offers a range of planetary analog environments, including volcanically active regions, extensive lava fields, geothermal springs, and large swaths of ice-covered terrain that are relevant to both rocky and icy planetary bodies. We combined portable VIS (532 nm) and NIR (785 nm) Raman spectroscopy, VIS micro-Raman spectroscopic mapping, and UV/VIS/NIR (200 - 1000 nm) and Mid-IR (5.6 - 10 µm, 1785 - 1000 cm-1) laser induced breakdown spectroscopy (LIBS) to characterize the mineral assemblages, hydrated components, and biomolecules in rock and sediment samples collected from three main sites in the volcanically active Kverkfjöll-Vatnajökull region of Iceland: basalt and basalt-hosted carbonate rind from Hveragil geothermal stream, volcanic sediments from the base of Vatnajökull glacier at Kverkfjöll, and lava from the nearby Holuhraun lava field. With our combination of techniques, we were able to identify major mineral polytypes typical for each sample set, as well as a large diversity of biomolecules typical for lichen communities across all samples. The anatase we observed using micro-Raman spectroscopic mapping of the lava compared with the volcanic sediment suggested different formation pathways: lava anatase formed authigenically, sediment anatase could have formed in association with microbial weathering. Mn-oxide, only detected in the carbonate samples, seems to have two possible formation pathways, either by fluvial or microbial weathering or both. Even with our ability to detect a wide diversity of biomolecules and minerals in all of the samples, there was not enough variation between each set to distinguish different environments based on the limited measurements done for this study.


Subject(s)
Minerals , Spectrum Analysis, Raman , Carbonates , Iceland , Minerals/analysis
5.
ACS Sens ; 5(4): 1102-1109, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32212640

ABSTRACT

We report the successful use of colorimetric arrays to identify chemical warfare agents (CWAs). Methods were developed to interpret and analyze a 73-indicator array with an entirely automated workflow. Using a cross-validated first-nearest-neighbor algorithm for assessing detection and identification performances on 632 exposures, at 30 min postexposure we report, on average, 78% correct chemical identification, 86% correct class-level identification, and 96% correct red light/green light (agent versus non-agent) detection. Of 174 total independent agent test exposures, 164 were correctly identified from a 30 min exposure in the red light/green light context, yielding a 94% correct identification of CWAs. Of 149 independent non-agent exposures, 139 were correctly identified at 30 min in the red light/green light context, yielding a 7% false alarm rate. We find that this is a promising approach for the development of a miniaturized, field-portable analytical equipment suitable for soldiers and first responders.


Subject(s)
Biosensing Techniques/methods , Chemical Warfare Agents/chemistry , Colorimetry/methods
6.
Opt Express ; 27(14): 19596-19614, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31503717

ABSTRACT

The standoff detection range of the simultaneous ultraviolet/visible/near-infrared (UVN) + longwave-Infrared (LWIR) Laser Induced Breakdown Spectroscopy (LIBS) detection system has been successfully extended from merely 10 cm to ≥ 1 meter by adopting a reflecting telescope collection scheme and UVN + LWIR LIBS emission signatures were acquired in various atmospheres from soil and mineral samples. This system simultaneously captured emission signatures from atomic, and simple and complex molecular target species existing in or near the same laser-induce plasma plume within micro-seconds. These pioneer standoff measurements of UVN + LWIR LIBS signatures have revealed an abundance of plasma-generated sample molecular emitting species in their vapor state along with atomic ones which gave intense and distinct signature emissions in both UVN (conventional LIBS) and LWIR (LWIR LIBS) spectral regions. A HITRAN simulation estimates the temperatures of those vapor molecular species to be around 2500 K. Laser-induced plasma emissions in the LWIR region provided direct information on the molecular components of the sample substances. The demonstrable capability of the LWIR LIBS on in situ characterization of carbon- and oxygen-rich materials is expected to find important applications in water discovery and organic materials signatures detection and identification. As a result laser ablation spectroscopy will be greatly augmented in both fundamental knowledge of and capability for chemical analysis.

7.
Opt Express ; 25(22): 26885-26897, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092172

ABSTRACT

This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.

8.
Appl Spectrosc ; 71(4): 728-734, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28374608

ABSTRACT

Thin solid films made of high nitro (NO2)/nitrate (NO3) content explosives were deposited on sand-blasted aluminum substrates and then studied using a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR; ∼5.6-10 µm). Despite the similarities of their chemical compositions and structures, thin films of three commonly used explosives (RDX, HMX, and PETN) studied in this work can be rapidly identified in the ambient air by their molecular LIBS emission signatures in the LWIR region. A preliminary assessment of the detection limit for a thin film of RDX on aluminum appears to be much lower than 60 µg/cm2. This LWIR LIBS setup is capable of rapidly probing and charactering samples without the need for elaborate sample preparation and also offers the possibility of a simultaneous ultraviolet visible and LWIR LIBS measurement.

9.
Opt Express ; 25(7): 7238-7250, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28380849

ABSTRACT

In this work, comparative long-wave infrared (LWIR) laser-induced breakdown spectroscopy (LIBS) emission studies of two excitation sources: conventional 1.064 µm and eye-safe laser wavelength at 1.574 µm were performed to analyze several widely-used inorganic energetic materials such as ammonium and potassium compounds as well as the organic liquid chemical warfare agent simulant, dimethyl methylphosphate (DMMP). LWIR LIBS emissions generated by both excitation sources were examined using three different detection systems: a single element liquid nitrogen cooled Mercury Cadmium Telluride (MCT) detector, an MCT linear array detection system with multi-channel preamplifiers + integrators, and an MCT linear array detection system with readout integrated circuit. It was observed that LWIR LIBS studies using an eye-safe pump laser generally reproduced atomic and molecular IR LIBS spectra as previously observed under 1.064 µm laser excitation.

10.
Appl Opt ; 55(32): 9166-9172, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27857309

ABSTRACT

A mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5 s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR, ∼5.6-10 µm) was recently developed. Similar to the conventional ultraviolet-visible LIBS, a broadband emission spectrum of condensed phase samples covering a 5.6-10 µm spectral region could be acquired from just a single laser-induced micro-plasma. Intense and distinct atomic and molecular LWIR emission signatures of various solid inorganic energetic materials were readily observed and identified. Time resolved emissions of inorganic energetic materials were studied to assess the lifetimes of LWIR atomic and molecular emissions. The LWIR atomic emissions generally decayed fast on the scale of tens of microseconds, while the molecular signature emissions from target molecules excited by the laser-induced plasma appeared to be very long lived (∼millisecond). The time dependence of emission intensities and peak wavelengths of these signature emissions gave an insight into the origin and the environment of the emitting target species. Moreover, observed lifetimes of these LWIR emissions can be utilized for further optimization of the signal quality and detection limits of this technique.

11.
Appl Opt ; 54(33): 9695-702, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26836525

ABSTRACT

In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5 s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10 µm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 µm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.


Subject(s)
Cadmium Compounds , Lasers , Mercury Compounds , Spectrum Analysis/methods , Chemical Warfare Agents/chemistry , Infrared Rays , Optical Phenomena , Organic Chemicals/chemistry , Perchlorates/chemistry , Potassium/chemistry , Quaternary Ammonium Compounds/chemistry , Spectrophotometry, Atomic/methods
12.
Appl Spectrosc ; 68(2): 226-31, 2014.
Article in English | MEDLINE | ID: mdl-24480279

ABSTRACT

In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 µm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.


Subject(s)
Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Spectrophotometry, Infrared/methods , Aspirin/chemistry , Equipment Design , Lasers , Models, Chemical , Organic Chemicals/analysis , Organic Chemicals/chemistry , Spectrophotometry, Infrared/instrumentation
13.
Appl Spectrosc ; 66(12): 1397-402, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23231901

ABSTRACT

Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof. The silicon-based detector for conventional ultraviolet-visible LIBS operations was replaced with a mercury-cadmium-telluride detector for MIR-LWIR spectral detection. The IR spectral signature region between 4 and 12 µm was mined for the appearance of MIR and LWIR-LIBS emissions directly indicative of oxygenated breakdown products as well as dissociated, and/or recombined sample molecular fragments. Distinct LWIR-LIBS emission signatures from dissociated-recombination sample molecular fragments between 4 and 12 µm are observed for the first time.


Subject(s)
Infrared Rays , Spectrophotometry, Atomic/methods , Lasers , Quaternary Ammonium Compounds/chemistry
14.
Appl Opt ; 51(28): 6765-80, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23033092

ABSTRACT

The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.


Subject(s)
Chemical Warfare Agents/analysis , Luminescent Measurements/instrumentation , Spectroscopy, Fourier Transform Infrared/instrumentation , Spectroscopy, Fourier Transform Infrared/methods , Algorithms , Computer Simulation , Humans , Neural Networks, Computer , Temperature , Thermography/methods
15.
Appl Spectrosc ; 63(1): 14-24, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19146715

ABSTRACT

Fourier transform infrared (FT-IR) spectroscopy historically is a powerful tool for the taxonomic classification of bacteria by genus, species, and strain when they are grown under carefully controlled conditions. Relatively few reports have investigated the determination and classification of pathogens such as the National Institute of Allergy and Infectious Diseases (NIAID) Category A Bacillus anthracis spores and cells (BA), Yersinia species, Francisella tularensis (FT), and Category B Brucella species from FT-IR spectra. We investigated the multivariate statistics classification ability of the FT-IR spectra of viable pathogenic and non-pathogenic NIAID Category A and B bacteria. The impact of different growth media, growth time and temperature, rolling circle filter of the data, and wavelength range were investigated for their microorganism differentiation capability. Viability of the bacteria was confirmed by agar plate growth after the FT-IR experimental procedures were performed. Principal component analysis (PCA) was reduced to maps of two PC vectors in order to distill the FT-IR spectral features into manageable, visual presentations. The PCA results of the strains of BA, FT, Brucella, and Yersinia spectra from conditions of varying growth media and culture time were readily separable in two-dimensional (2D) PC plots. FT spectra were separated from those of the three other genera. The BA pathogenic spore strains 1029, LA1, and Ames were clearly differentiated from the rest of the dataset. Yersinia rhodei, Y. enterocolitica, and Y. pestis species were distinctly separated from the remaining dataset and could also be classified by growth media. Different growth media produced distinct subsets in the FT, BA, and Yersinia spp. regions in the 2D PC plots. Various 2D PC plots provided differential degrees of separation with respect to the four viable bacterial genera including the BA sub-categories of pathogenic spores, vegetative cells, and nonpathogenic vegetative cells. This work provided evidence that FT-IR spectroscopy can indeed separate the four major pathogenic bacterial genera of NIAID Category A and B biological threat agents including details according to the growth conditions and statistical parameters.


Subject(s)
Bacteria/chemistry , Bacteria/classification , Bacterial Typing Techniques/methods , Bacillus anthracis/chemistry , Bacillus anthracis/classification , Bacillus anthracis/growth & development , Bacteria/growth & development , Brucella/chemistry , Brucella/classification , Brucella/growth & development , Culture Media , Francisella tularensis/chemistry , Francisella tularensis/classification , Francisella tularensis/growth & development , Image Processing, Computer-Assisted , Multivariate Analysis , Principal Component Analysis , Spectroscopy, Fourier Transform Infrared , Spores, Bacterial/chemistry , Temperature , Time Factors , Yersinia/chemistry , Yersinia/classification , Yersinia/growth & development
17.
Appl Spectrosc ; 61(3): 321-6, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17389073

ABSTRACT

Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique for detecting and identifying trace elemental contaminants by monitoring the visible atomic emission from small plasmas. However, mid-infrared (MIR), generally referring to the wavelength range between 2.5 to 25 microm, molecular vibrational and rotational emissions generated by a sample during a LIBS event has not been reported. The LIBS investigations reported in the literature largely involve spectral analysis in the ultraviolet-visible-near-infrared (UV-VIS-NIR) region (less than 1 microm) to probe elemental composition and profiles. Measurements were made to probe the MIR emission from a LIBS event between 3 and 5.75 microm. Oxidation of the sputtered carbon atoms and/or carbon-containing fragments from the sample and atmospheric oxygen produced CO(2) and CO vibrational emission features from 4.2 to 4.8 microm. The LIBS MIR emission has the potential to augment the conventional UV-VIS electronic emission information with that in the MIR region.


Subject(s)
Carbon Dioxide/chemistry , Carbon/chemistry , Lasers , Oxygen/chemistry , Spectrophotometry, Infrared/methods , Feasibility Studies , Reproducibility of Results , Sensitivity and Specificity
18.
Appl Opt ; 45(4): 799-808, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16485692

ABSTRACT

Infrared remote detection of chemical and biological agents in a complex environment depends on the ability to recognize threat signatures and differentiate them from the signatures of innocuous materials. In this paper, we addressed the methods of producing the constraint spectra needed to ensure reliable operation in a meteorologically changing environment. We collected arrays of background spectra of ground, woods, and low-angle sky on an irregular basis over a period of a year. Based on the hypothesis that the concentration fluctuations of species in the sensor's field of view can be exploited to form signatures, the standard deviations of the array (the result is characteristic of all fluctuations) and the difference array (the result is characteristic of sensor fluctuations) were computed. Subtracting these two spectra and filtering the result produced a spectrum, which is a measure of the IR fluctuations in the scene. The resulting set of scene spectra were processed into aberrant noise, and deterministic groups by numerical filtering and statistical methods.

19.
Anal Chem ; 78(2): 408-15, 2006 Jan 15.
Article in English | MEDLINE | ID: mdl-16408921

ABSTRACT

Diffuse reflection data are presented for ethyl methylphosphonate in a fine Utah dirt sample as a model system for organophosphate-contaminated soil. The data revealed a chemometric artifact when the spectra were represented in Kubelka-Munk units that manifests as a linear dependence of spectral peak height on variations in the observed baseline position (i.e., the position of the observed transmission intensity where no absorption features occur in the sample spectrum). We believe that this artifact is the result of the mathematical process by which the raw data are converted into Kubelka-Munk units, and we developed a numerical strategy for compensating for the observed effect and restoring chemometric precision to the diffuse reflection data for quantitative analysis while retaining the benefits of linear calibration afforded by the Kubelka-Munk approach. We validated our Kubelka-Munk correction strategy by repeating the experiment using a simpler system--pure caffeine in potassium bromide. The numerical preprocessing includes conventional multiplicative scatter correction coupled with a baseline offset correction that facilitates the use of quantitative diffuse reflection data in the Kubelka-Munk formalism for the quantitation of contaminants in a complex soil matrix, but is also applicable to more fundamental diffuse reflection quantitative analysis experiments.


Subject(s)
Organophosphonates/analysis , Soil Pollutants/analysis , Spectroscopy, Fourier Transform Infrared/methods , Linear Models
20.
Appl Opt ; 43(13): 2767-76, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15130018

ABSTRACT

A method is described for the measurement of the noise-equivalent spectral radiance (NESR) of Fourier transform infrared (FTIR) spectroradiometers at all wave numbers of a selected range. The method requires minimal detailed knowledge of the sensor and no support equipment beyond a blackbody source. The NESRs of the FTIR spectroradiometer are determined at every wave-number increment in the 700-1300 cm(-1) range, for six resolutions, with a conventional blackbody source and ensembles of differential spectra. The NESRs are well behaved and consistent with the expected dependence on resolution; however, they depend on source temperature at the highest (1 cm(-1)) and lowest (32 cm(-1)) resolutions, with little or no statistical dependence at intermediate resolutions. Residual source drift is shown to be the likely cause of the dependence at 1 cm(-1); the dependence on the source at 32 cm(-1) resolution is shown to be most probably due to photon noise. At intermediate resolutions the sensor noise is dominant.

SELECTION OF CITATIONS
SEARCH DETAIL
...