Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 330: 121728, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37116566

ABSTRACT

Tropospheric ozone (O3) pollution has long been a prominent environmental threat due to its adverse impacts on vulnerable populations and ecosystems. In recent years, an unexpected increase in O3 levels over the South Coast Air Basin (SoCAB) of California has been observed despite reduced precursor emissions and the driving factors behind this abnormal condition remain unclear. In this work, we combine ambient measurements, satellite data, and air quality modeling to investigate O3 and precursor emission trends and explore the impacts of meteorological variability and emission changes on O3 over the SoCAB from 2012 to 2020. Changes in O3 trends were characterized by declining O3 in 2012-2015, and increasing O3 afterwards with the most extreme O3 exceedances in 2020. Basin-wide increases of MDA8 O3 concentrations over warm season were depicted between 2012 and 2020, with the most significant enhancements (5-10 ppb) observed in San Bernardino County. Persistent heatwaves and weak ventilation on consecutive days were closely correlated with O3 exceedances (r2 above 0.6) over inland SoCAB. While decreasing trends in NOx (-4.1%/yr) and VOC emissions (-1.8%/yr) inferred from emission inventory and satellites during 2012-2020 resulted in a slow transition for O3 sensitivity from VOCs-limited to NOx-limited, model simulations performed with fixed meteorology indicate that unfavorable meteorological conditions could largely offset regulation benefits, with meteorology anomaly-induced monthly O3 changes reaching 20 ppb (May 2020) and the deterioration of O3 pollution in 2016, 2017, and 2020 was largely attributed to unfavorable meteorological conditions. Nevertheless, anthropogenic emission changes may act as the dominant factor in governing O3 variations across the SoCAB when net effects of meteorology are neutral (typically 2018). This work provides a comprehensive assessment of O3 pollution and contributes valuable insights into understanding the long-term changes of O3 and precursors in guiding future regulation efforts in the SoCAB.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Air Pollutants/analysis , Ecosystem , Meteorology , Air Pollution/analysis , Ozone/analysis , California , Environmental Monitoring/methods
2.
Nat Commun ; 13(1): 5738, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180421

ABSTRACT

Air quality associated public health co-benefit may emerge from climate and energy policies aimed at reducing greenhouse gas (GHG) emissions. However, the distribution of these co-benefits has not been carefully studied, despite the opportunity to tailor mitigation efforts so they achieve maximum benefits within socially and economically disadvantaged communities (DACs). Here, we quantify such health co-benefits from different long-term, low-carbon scenarios in California and their distribution in the context of social vulnerability. The magnitude and distribution of health benefits, including within impacted communities, is found to varies among scenarios which reduce economy wide GHG emissions by 80% in 2050 depending on the technology- and fuel-switching decisions in individual end-use sectors. The building electrification focused decarbonization strategy achieves ~15% greater total health benefits than the truck electrification focused strategy which uses renewable fuels to meet building demands. Conversely, the enhanced electrification of the truck sector is shown to benefit DACs more effectively. Such tradeoffs highlight the importance of considering environmental justice implications in the development of climate mitigation planning.


Subject(s)
Air Pollution , Greenhouse Gases , Air Pollution/analysis , Air Pollution/prevention & control , California , Carbon
3.
J Hazard Mater ; 437: 129301, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35716560

ABSTRACT

Batteries are important for promoting renewable energy, but, like most engineered products, they contain multiple hazardous materials. The purpose of this study is to evaluate industrial-scale batteries using GreenScreen® for Safer Chemicals, an established chemical hazard assessment (CHA) framework, and to develop a systematic, transparent methodology to quantify the CHA results, harmonize them, and aggregate them into single-value hazard scores, which can facilitate quantitative comparison and a robust evaluation of data gaps, inconsistencies, and uncertainty through the implementation of carefully selected scenarios and stochastic multicriteria acceptability analysis (SMAA). Using multiple authoritative toxicity data sources, six battery products are evaluated: three lithium-ion batteries (lithium iron phosphate, lithium nickel cobalt manganese hydroxide, and lithium manganese oxide), and three redox flow batteries (vanadium redox, zinc-bromine, and all-iron). The CHA results indicate that many materials in these batteries, including reagents and intermediates, inherently exhibit high hazard; therefore, safer materials should be identified and considered in future designs. The scenario analysis and SMAA, combined, provide a quantitative evaluation framework to support the decision-making needed to compare alternative technologies. Thus, this study highlights specific strategies to reduce the use of hazardous materials in complex engineered products before they are widely used in this rapidly-expanding industry sector.

4.
Environ Sci Technol ; 55(1): 547-552, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33296187

ABSTRACT

Historically, California has been a world leader in the development and application of environmental regulations. Policies to address air pollution have reduced criteria pollutant emissions, improved regional air quality, and benefited public health. To this end, California has imposed strict regulations on light-duty, medium-duty, and heavy-duty vehicles to reduce ambient concentrations of health-damaging pollutants such as ozone and fine particulate matter (PM2.5). Here, we compare the impact on air quality in California should California not have adopted on-road vehicle regulations (No Regulations Case) with the air quality associated with current regulations (Regulated Case). Simulations of atmospheric chemistry and transport are conducted to evaluate the impact of emissions on ambient levels of ozone and PM2.5, and a health impact assessment tool is used to quantify and monetize societal impairment. Compared with the "Regulated Case," the "No Regulations Case" results in a maximum peak 8 h ozone level of 162 ppb and 24 h PM2.5 of 42.7 µg/m3 in summer, and 107 µg/m3 and 24 h PM2.5 in winter. The associated increases in the daily incidence of human health outcomes are $66 million per day and $116 million per day during peak pollutant formation periods in summer and winter, respectively. Overall, the findings quantitatively establish the role and importance of on-road vehicle regulations in protecting societal well-being.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , California , Environmental Monitoring , Humans , Particulate Matter/analysis , Vehicle Emissions/analysis
5.
Data Brief ; 27: 104716, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31763387

ABSTRACT

Steady state simulations were carried out in APSEN Plus®, state-point stream data were extracted from the simulation results and tabulated in sequential order for IGCC configurations. These data give detailed insights into the performance of individual process units and enable researches to better understand the interplay of various process units as well as provide data for reproducibility of the work described in Ref. (Rosner et al., 2019). Furthermore, more detailed insights in the economic analysis are garnered by providing itemized capital and operating cost data as well as the individual unit cost correlations. In addition, a detailed plant water balance is provided for the base cases of the cold gas cleanup scenario and warm gas cleanup scenario.

6.
Sci Total Environ ; 497-498: 711-724, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25087186

ABSTRACT

A study was conducted to compare the technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions. Part 2 of the study focused on determining the greenhouse gas and renewable energy utilization impacts of different pathways to stabilize major surface reservoir levels. Using a detailed electric grid model and taking into account impacts on the operation of the water supply infrastructure, the greenhouse gas emissions and effect on overall grid renewable penetration level was calculated for each water supply option portfolio that successfully secured water availability from Part 1. The effects on the energy signature of water supply infrastructure were found to be just as important as that of the fundamental processes for each option. Under historical (baseline) conditions, many option portfolios were capable of securing surface reservoir levels with a net neutral or negative effect on emissions and a benefit for renewable energy utilization. Under climate change augmented conditions, however, careful selection of the water supply option portfolio was required to prevent imposing major emissions increases for the system. Overall, this analysis provided quantitative insight into the tradeoffs associated with choosing different pathways for securing California's water supply.

7.
Sci Total Environ ; 497-498: 697-710, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25022721

ABSTRACT

The technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions were compared. Part 1 of the study focused on determining the scale of the options required to secure water availability and compared the effectiveness of different options. A spatially and temporally resolved model of California's major surface reservoirs was developed, and its sensitivity to urban water conservation, desalination, and water reuse was examined. Potential capacities of the different options were determined. Under historical (baseline) hydrology conditions, many individual options were found to be capable of securing water availability alone. Under climate change augment conditions, a portfolio approach was necessary. The water savings from many individual options other than desalination were insufficient in the latter, however, relying on seawater desalination alone requires extreme capacity installations which have energy, brine disposal, management, and cost implications. The importance of identifying and utilizing points of leverage in the system for choosing where to deploy different options is also demonstrated.

8.
Environ Sci Technol ; 43(23): 9022-9, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19943683

ABSTRACT

Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).


Subject(s)
Air/standards , Energy-Generating Resources , Greenhouse Effect , Hydrogen/chemistry , Motor Vehicles , Air/analysis , Air Pollution/analysis , California , Feedback , Geography , Ozone/analysis , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL