Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cells ; 12(18)2023 09 13.
Article in English | MEDLINE | ID: mdl-37759490

ABSTRACT

Preclinical studies have shown that chronic alcohol abuse leads to alterations in the gastrointestinal microbiota that are associated with behavior changes, physiological alterations, and immunological effects. However, such studies have been limited in their ability to evaluate the direct effects of alcohol-associated dysbiosis. To address this, we developed a humanized alcohol-microbiota mouse model to systematically evaluate the immunological effects of chronic alcohol abuse mediated by intestinal dysbiosis. Germ-free mice were colonized with human fecal microbiota from individuals with high and low Alcohol Use Disorders Identification Test (AUDIT) scores and bred to produce human alcohol-associated microbiota or human control-microbiota F1 progenies. F1 offspring colonized with fecal microbiota from individuals with high AUDIT scores had increased susceptibility to Klebsiella pneumoniae and Streptococcus pneumoniae pneumonia, as determined by increased mortality rates, pulmonary bacterial burden, and post-infection lung damage. These findings highlight the importance of considering both the direct effects of alcohol and alcohol-induced dysbiosis when investigating the mechanisms behind alcohol-related disorders and treatment strategies.


Subject(s)
Alcoholism , Microbiota , Pneumonia, Bacterial , Humans , Animals , Mice , Alcoholism/complications , Dysbiosis/complications , Ethanol
2.
Pathogens ; 12(5)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37242309

ABSTRACT

Intestinal dysbiosis increases susceptibility to infection through the alteration of metabolic profiles, which increases morbidity. Zinc (Zn) homeostasis in mammals is tightly regulated by 24 Zn transporters. ZIP8 is unique in that it is required by myeloid cells to maintain proper host defense against bacterial pneumonia. In addition, a frequently occurring ZIP8 defective variant (SLC39A8 rs13107325) is strongly associated with inflammation-based disorders and bacterial infection. In this study, we developed a novel model to study the effects of ZIP8-mediated intestinal dysbiosis on pulmonary host defense independent of the genetic effects. Cecal microbial communities from a myeloid-specific Zip8 knockout mouse model were transplanted into germ-free mice. Conventionalized ZIP8KO-microbiota mice were then bred to produce F1 and F2 generations of ZIP8KO-microbiota mice. F1 ZIP8KO-microbiota mice were also infected with S. pneumoniae, and pulmonary host defense was assessed. Strikingly, the instillation of pneumococcus into the lung of F1 ZIP8KO-microbiota mice resulted in a significant increase in weight loss, inflammation, and mortality when compared to F1 wild-type (WT)-microbiota recipients. Similar defects in pulmonary host defense were observed in both genders, although consistently greater in females. From these results, we conclude that myeloid Zn homeostasis is not only critical for myeloid function but also plays a significant role in the maintenance and control of gut microbiota composition. Further, these data demonstrate that the intestinal microbiota, independent of host genetics, play a critical role in governing host defense in the lung against infection. Finally, these data strongly support future microbiome-based interventional studies, given the high incidence of zinc deficiency and the rs13107325 allele in humans.

3.
Alcohol Clin Exp Res (Hoboken) ; 47(1): 36-44, 2023 01.
Article in English | MEDLINE | ID: mdl-36446606

ABSTRACT

Alcohol misuse contributes to the dysregulation of immune responses and multiorgan dysfunction across various tissues, which are associated with higher risk of morbidity and mortality in people with alcohol use disorders. Organ-specific immune cells, including microglia in the brain, alveolar macrophages in the lungs, and Kupffer cells in the liver, play vital functions in host immune defense through tissue repair and maintenance of homeostasis. However, binge drinking and chronic alcohol misuse impair these immune cells' abilities to regulate inflammatory signaling and metabolism, thus contributing to multiorgan dysfunction. Further complicating these delicate systems, immune cell dysfunction associated with alcohol misuse is exacerbated by aging and gut barrier leakage. This critical review describes recent advances in elucidating the potential mechanisms by which alcohol misuse leads to derangements in host immunity and highlights current gaps in knowledge that may be the focus of future investigations.


Subject(s)
Alcoholism , Humans , Alcoholism/metabolism , Ethanol/metabolism , Liver , Macrophages, Alveolar/metabolism , Lung
4.
Front Immunol ; 13: 934617, 2022.
Article in English | MEDLINE | ID: mdl-36105802

ABSTRACT

Alcohol use is known to alter the function of both innate and adaptive immune cells, such as neutrophils, macrophages, B cells, and T cells. Immune dysfunction has been associated with alcohol-induced end-organ damage. The role of innate lymphocytes in alcohol-associated pathogenesis has become a focus of research, as liver-resident natural killer (NK) cells were found to play an important role in alcohol-associated liver damage pathogenesis. Innate lymphocytes play a critical role in immunity and homeostasis; they are necessary for an optimal host response against insults including infections and cancer. However, the role of innate lymphocytes, including NK cells, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, gamma delta T cells, and innate lymphoid cells (ILCs) type 1-3, remains ill-defined in the context of alcohol-induced end-organ damage. Innate-like B lymphocytes including marginal zone B cells and B-1 cells have also been identified; however, this review will address the effects of alcohol misuse on innate T lymphocytes, as well as the consequences of innate T-lymphocyte dysfunction on alcohol-induced tissue damage.


Subject(s)
Immune System Diseases , Immunity, Innate , Humans , Killer Cells, Natural , Liver , Lymphoid Tissue
5.
Metabolites ; 12(8)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-36005588

ABSTRACT

Indole is an endogenous substance currently being evaluated as a biomarker for ulcerative colitis, irritable bowel syndrome, Crohn's disease and non-alcoholic fatty liver disease. A novel, selective, and sensitive method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed for quantitation of indole concentrations in mouse plasma and tissues. Samples were prepared by protein precipitation using ice-cold acetonitrile (ACN) followed by injecting the extracted analyte to LC-MS/MS system. Indole was separated using Synergi Fusion C18 (4 µm, 250 × 2.0 mm) column with mobile phase 0.1% aqueous formic acid (A) and methanol (B) using gradient flow with run time 12 min. The mass spectrometer was operated in atmospheric pressure chemical ionization (APCI) positive mode at unit resolution in multiple reaction monitoring (MRM) mode, using precursor ion > product ion combinations of 118.1 > 91.1 m/z for indole and 124.15 > 96.1 m/z for internal standard (IS) indole d7. The MS/MS response was linear over the range of indole concentrations (1−500 ng/mL). The validated method was applied for quantitation of indole concentrations range in mouse lungs (4.3−69.4 ng/g), serum (0.8−38.7 ng/mL) and cecum (1043.8−12,124.4 ng/g). This method would help investigate the role of indole as a biomarker and understand its implications in different disease states.

6.
Front Cell Dev Biol ; 10: 924820, 2022.
Article in English | MEDLINE | ID: mdl-35832795

ABSTRACT

Manganese (Mn) and Zinc (Zn) are essential micronutrients whose concentration and location within cells are tightly regulated at the onset of infection. Two families of Zn transporters (ZIPs and ZnTs) are largely responsible for regulation of cytosolic Zn levels and to a certain extent, Mn levels, although much less is known regarding Mn. The capacity of pathogens to persevere also depends on access to micronutrients, yet a fundamental gap in knowledge remains regarding the importance of metal exchange at the host interface, often referred to as nutritional immunity. ZIP8, one of 14 ZIPs, is a pivotal importer of both Zn and Mn, yet much remains to be known. Dietary Zn deficiency is common and commonly occurring polymorphic variants of ZIP8 that decrease cellular metal uptake (Zn and Mn), are associated with increased susceptibility to infection. Strikingly, ZIP8 is the only Zn transporter that is highly induced following bacterial exposure in key immune cells involved with host defense against leading pathogens. We postulate that mobilization of Zn and Mn into key cells orchestrates the innate immune response through regulation of fundamental defense mechanisms that include phagocytosis, signal transduction, and production of soluble host defense factors including cytokines and chemokines. New evidence also suggests that host metal uptake may have long-term consequences by influencing the adaptive immune response. Given that activation of ZIP8 expression by pathogens has been shown to influence parenchymal, myeloid, and lymphoid cells, the impact applies to all mucosal surfaces and tissue compartments that are vulnerable to infection. We also predict that perturbations in metal homeostasis, either genetic- or dietary-induced, has the potential to impact bacterial communities in the host thereby adversely impacting microbiome composition. This review will focus on Zn and Mn transport via ZIP8, and how this vital metal transporter serves as a "go to" conductor of metal uptake that bolsters host defense against pathogens. We will also leverage past studies to underscore areas for future research to better understand the Zn-, Mn- and ZIP8-dependent host response to infection to foster new micronutrient-based intervention strategies to improve our ability to prevent or treat commonly occurring infectious disease.

7.
Front Microbiol ; 13: 828704, 2022.
Article in English | MEDLINE | ID: mdl-35300484

ABSTRACT

Bacterial membrane vesicles (MVs) are nanoparticles derived from the membrane components of bacteria that transport microbial derived substances. MVs are ubiquitous across a variety of terrestrial and marine environments and vary widely in their composition and function. Membrane vesicle functional diversity is staggering: MVs facilitate intercellular communication by delivering quorum signals, genetic information, and small molecules active against a variety of receptors. MVs can deliver destructive virulence factors, alter the composition of the microbiota, take part in the formation of biofilms, assist in the uptake of nutrients, and serve as a chemical waste removal system for bacteria. MVs also facilitate host-microbe interactions including communication. Released in mass, MVs overwhelm the host immune system and injure host tissues; however, there is also evidence that vesicles may take part in processes which promote host health. This review will examine the ascribed functions of MVs within the context of human health and disease.

8.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35162945

ABSTRACT

Pneumococcal pneumonia is a leading cause of morbidity and mortality worldwide. An increased susceptibility is due, in part, to compromised immune function. Zinc is required for proper immune function, and an insufficient dietary intake increases the risk of pneumonia. Our group was the first to reveal that the Zn transporter, ZIP8, is required for host defense. Furthermore, the gut microbiota that is essential for lung immunity is adversely impacted by a commonly occurring defective ZIP8 allele in humans. Taken together, we hypothesized that loss of the ZIP8 function would lead to intestinal dysbiosis and impaired host defense against pneumonia. To test this, we utilized a novel myeloid-specific Zip8KO mouse model in our studies. The comparison of the cecal microbial composition of wild-type and Zip8KO mice revealed significant differences in microbial community structure. Most strikingly, upon a S. pneumoniae lung infection, mice recolonized with Zip8KO-derived microbiota exhibited an increase in weight loss, bacterial dissemination, and lung inflammation compared to mice recolonized with WT microbiota. For the first time, we reveal the critical role of myeloid-specific ZIP8 on the maintenance of the gut microbiome structure, and that loss of ZIP8 leads to intestinal dysbiosis and impaired host defense in the lung. Given the high incidence of dietary Zn deficiency and the ZIP8 variant allele in the human population, additional investigation is warranted to improve surveillance and treatment strategies.


Subject(s)
Bacteria/classification , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Dysbiosis/metabolism , Lung/microbiology , Pneumonia, Pneumococcal/metabolism , Streptococcus pneumoniae/pathogenicity , Animals , Bacteria/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Disease Models, Animal , Dysbiosis/genetics , Female , Gastrointestinal Microbiome , Gene Knockout Techniques , High-Throughput Nucleotide Sequencing , Lung/metabolism , Mice , Pneumonia, Pneumococcal/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Zinc/metabolism
9.
Microbiol Immunol ; 66(6): 330-341, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35067963

ABSTRACT

The gut microbiota has a fundamental role in the development and the maturation of the host immune system. Both innate and adaptive immune cells have critical functions in microbial pathogen containment and clearance, but the regulation of the commensal microbiome ecosystem in the gastrointestinal tract by these major immune cell populations is incompletely defined. The role of specific innate and adaptive immune cell in the regulation of the microbiota in the intestinal tract biogeographically was investigated. Dendritic cells, macrophages, CD4+ T-cells, CD8+ T-cells, and B-cells were depleted using monoclonal antibodies and clodronate liposomes, and the microbial communities were determined by 16S rRNA gene sequencing. With specific immune cell depletion, distinct microbiota changes were observed. In general, immune cell depleted mice had higher microbiota richness and evenness at all gut anatomical sites. At each gut segment, samples from immune cell-depleted animals clustered away from the isotype/liposome control mice. This was especially dramatic for the small intestinal microbiota. Specifically, Enterobacteriaceae, Bacteroides acidifaciens, and Mucispirillum schaedleri were highly enriched in the mucosa and lumen of the small intestine in immune cell-deficient animals. Further, the mucosal microbiota had higher microbiota evenness compared with luminal microbiota at all gut segments, and the UniFrac distance between B cell depleted and isotype control mice was the largest in the duodenum followed by the ileum and colon. Taken together, the data suggest that innate and adaptive immune cells specifically contribute to the regulation of the gut microbiota's biogeographical distribution along the gastrointestinal tract, and microbiota in the duodenum mucosa are more responsive to host immune changes compared with other anatomical sites.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Adaptive Immunity , Animals , CD4-Positive T-Lymphocytes , Immunity, Innate , Mice , RNA, Ribosomal, 16S/genetics
10.
J Immunol ; 207(5): 1357-1370, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34380651

ABSTRACT

Zinc (Zn) is required for proper immune function and host defense. Zn homeostasis is tightly regulated by Zn transporters that coordinate biological processes through Zn mobilization. Zn deficiency is associated with increased susceptibility to bacterial infections, including Streptococcus pneumoniae, the most commonly identified cause of community-acquired pneumonia. Myeloid cells, including macrophages and dendritic cells (DCs), are at the front line of host defense against invading bacterial pathogens in the lung and play a critical role early on in shaping the immune response. Expression of the Zn transporter ZIP8 is rapidly induced following bacterial infection and regulates myeloid cell function in a Zn-dependent manner. To what extent ZIP8 is instrumental in myeloid cell function requires further study. Using a novel, myeloid-specific, Zip8 knockout model, we identified vital roles of ZIP8 in macrophage and DC function upon pneumococcal infection. Administration of S. pneumoniae into the lung resulted in increased inflammation, morbidity, and mortality in Zip8 knockout mice compared with wild-type counterparts. This was associated with increased numbers of myeloid cells, cytokine production, and cell death. In vitro analysis of macrophage and DC function revealed deficits in phagocytosis and increased cytokine production upon bacterial stimulation that was, in part, due to increased NF-κB signaling. Strikingly, alteration of myeloid cell function resulted in an imbalance of Th17/Th2 responses, which is potentially detrimental to host defense. These results (for the first time, to our knowledge) reveal a vital ZIP8- and Zn-mediated axis that alters the lung myeloid cell landscape and the host response against pneumococcus.


Subject(s)
Cation Transport Proteins/metabolism , Dendritic Cells/immunology , Macrophages/immunology , Myeloid Cells/immunology , Pneumonia, Pneumococcal/immunology , Streptococcus pneumoniae/physiology , Th17 Cells/immunology , Th2 Cells/immunology , Animals , Cation Transport Proteins/genetics , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Humans , Immunity, Innate , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Phagocytosis/genetics , Signal Transduction
11.
Commun Biol ; 4(1): 997, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34426641

ABSTRACT

The intestinal microbiota generates many different metabolites which are critical for the regulation of host signaling pathways. In fact, a wide-range of diseases are associated with increased levels of local or systemic microbe-derived metabolites. In contrast, certain bacterial metabolites, such as tryptophan metabolites, are known to contribute to both local and systemic homeostasis. Chronic alcohol consumption is accompanied by alterations to intestinal microbial communities, and their functional capacities. However, little is known about the role of alcohol-associated dysbiosis on host defense against bacterial pneumonia. Our previous work using fecal transplantation demonstrated that alcohol-associated intestinal dysbiosis, independent of ethanol consumption, increased susceptibility to Klebsiella pneumonia. Here, we demonstrate that intestinal microbiota treatments mitigate the increased risk of alcohol-associated pneumonia. Treatment with the microbial metabolite indole or with probiotics reduced pulmonary and extrapulmonary bacterial burden, restored immune responses, and improved cellular trafficking required for host defense. Protective effects were, in part, mediated by aryl hydrocarbon receptors (AhR), as inhibition of AhR diminished the protective effects. Thus, alcohol appears to impair the production/processing of tryptophan catabolites resulting in immune dysregulation and impaired cellular trafficking. These data support microbiota therapeutics as novel strategies to mitigate the increased risk for alcohol-associated bacterial pneumonia.


Subject(s)
Ethanol/adverse effects , Gastrointestinal Microbiome/physiology , Klebsiella Infections/immunology , Klebsiella/physiology , Pneumonia/immunology , Animals , Female , Immunity/drug effects , Indoles/pharmacology , Lung/drug effects , Lung/microbiology , Mice , Mice, Inbred C57BL , Probiotics/pharmacology
12.
Alcohol Clin Exp Res ; 45(5): 934-947, 2021 05.
Article in English | MEDLINE | ID: mdl-33704802

ABSTRACT

BACKGROUND: Chronic alcohol consumption is associated with a compromised innate and adaptive immune responses to infectious disease. Mucosa-associated invariant T (MAIT) cells play a critical role in antibacterial host defense. However, whether alcohol-associated deficits in innate and adaptive immune responses are mediated by alterations in MAIT cells remains unclear. METHODS: To investigate the impact of alcohol on MAIT cells, mice were treated with binge-on-chronic alcohol for 10 days and sacrificed at day 11. MAIT cells in the barrier organs (lung, liver, and intestine) were characterized by flow cytometry. Two additional sets of animals were used to examine the involvement of gut microbiota on alcohol-induced MAIT cell changes: (1) Cecal microbiota from alcohol-fed (AF) mice were adoptive transferred into antibiotic-pretreated mice and (2) AF mice were treated with antibiotics during the experiment. MAIT cells in the barrier organs were measured via flow cytometry. RESULTS: Binge-on-chronic alcohol feeding led to a significant reduction in the abundance of MAIT cells in the barrier tissues. However, CD69 expression on tissue-associated MAIT cells was increased in AF mice compared with pair-fed (PF) mice. The expression of Th1 cytokines and the corresponding transcriptional factor was tissue specific, showing downregulation in the intestine and increases in the lung and liver in AF animals. Transplantation of fecal microbiota from AF mice resulted in a MAIT cell profile aligned to that of AF mouse donor. Antibiotic treatment abolished the MAIT cell differences between AF and PF animals. CONCLUSION: MAIT cells in the intestine, liver, and lung are perturbed by alcohol use and these changes are partially attributable to alcohol-associated dysbiosis. MAIT cell dysfunction may contribute to alcohol-induced innate and adaptive immunity and consequently end-organ pathophysiology.


Subject(s)
Alcoholism/immunology , Binge Drinking/immunology , Central Nervous System Depressants/pharmacology , Dysbiosis/immunology , Ethanol/pharmacology , Gastrointestinal Microbiome , Mucosal-Associated Invariant T Cells/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Antigens, CD/drug effects , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/drug effects , Antigens, Differentiation, T-Lymphocyte/metabolism , Fecal Microbiota Transplantation , Flow Cytometry , Intestinal Mucosa/cytology , Lectins, C-Type/drug effects , Lectins, C-Type/metabolism , Liver/cytology , Liver/immunology , Lung/cytology , Lung/immunology , Mice , Mucosal-Associated Invariant T Cells/immunology
13.
Alcohol ; 90: 11-17, 2021 02.
Article in English | MEDLINE | ID: mdl-33080339

ABSTRACT

Alcohol misuse is long established as a contributor to the pathophysiology of the lung. The intersection of multi-organ responses to alcohol-mediated tissue injury likely contributes to the modulation of lung in response to injury. Indeed, the negative impact of alcohol on susceptibility to infection and on lung barrier function is now well documented. Thus, the alcohol lung represents a very likely comorbidity for the negative consequences of both COVID-19 susceptibility and severity. In this review, we present the known alcohol misuse ramifications on the lung in the context of the current coronavirus pandemic.


Subject(s)
Alcoholism/epidemiology , Alcoholism/metabolism , COVID-19/epidemiology , COVID-19/metabolism , Alcoholism/immunology , Animals , COVID-19/immunology , Cytokines/immunology , Cytokines/metabolism , Ethanol/administration & dosage , Ethanol/adverse effects , Humans , Lung/drug effects , Lung/immunology , Lung/metabolism , Risk Factors
14.
Alcohol Clin Exp Res ; 43(10): 2122-2133, 2019 10.
Article in English | MEDLINE | ID: mdl-31407808

ABSTRACT

BACKGROUND: Alcohol use causes significant disruption of intestinal microbial communities, yet exactly how these dysbiotic communities interact with the host is unclear. We sought to understand the role of microbial products associated with alcohol dysbiosis in mice on intestinal permeability and immune activation in an in vitro model system. METHODS: Microbiota samples from binge-on-chronic alcohol-fed and pair-fed male and female mice were cultured in Gifu Anaerobic Broth for 24 hours under anaerobic conditions. Live/whole organisms were removed, and microbial products were collected and added to human peripheral blood mononuclear cells (PBMCs) or polarized C2BBe1 intestinal epithelial monolayers. Following stimulation, transepithelial electrical resistance (TEER) was measured using a volt/ohm meter and immune activation of PBMC was assessed via flow cytometry. RESULTS: Microbial products from male and female alcohol-fed mice significantly decreased TEER (mean percentage change from baseline alcohol-fed 0.86 Ω/cm2 vs. pair-fed 1.10 Ω/cm2 ) compared to microbial products from control mice. Following ex vivo stimulation, immune activation of PBMC was assessed via flow cytometry. We found that microbial products from alcohol-fed mice significantly increased the percentage of CD38+ CD4+ (mean alcohol-fed 17.32% ± 0.683% standard deviation (SD) vs. mean pair-fed 14.2% ± 1.21% SD, p < 0.05) and CD8+ (mean alcohol-fed 20.28% ± 0.88% SD vs. mean pair-fed 12.58% ± 3.59% SD, p < 0.05) T cells. CONCLUSIONS: Collectively, these data suggest that microbial products contribute to immune activation and intestinal permeability associated with alcohol dysbiosis. Further, utilization of these ex vivo microbial product assays will allow us to rapidly assess the impact of microbial products on intestinal permeability and immune activation and to identify probiotic therapies to ameliorate these defects.


Subject(s)
Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Gastrointestinal Microbiome , Immune System/drug effects , Intestinal Absorption/drug effects , Intestines/drug effects , ADP-ribosyl Cyclase 1/immunology , Animals , Bacteria, Anaerobic/metabolism , Binge Drinking/metabolism , Binge Drinking/microbiology , CD4 Antigens/immunology , Electric Impedance , Epithelial Cells/drug effects , Female , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Permeability/drug effects
15.
Alcohol ; 80: 33-43, 2019 11.
Article in English | MEDLINE | ID: mdl-30213614

ABSTRACT

Alcohol use in persons living with HIV (PLWH) worsens the severity of bacterial pneumonia. However, the exact mechanism(s) by which this occurs remain ill-defined. We hypothesized that alcohol in the setting of HIV infection decreases Streptococcus pneumoniae clearance from the lung through mechanisms mediated by the gut microbiota. Humanized BLT (bone marrow, liver, thymus) mice were infected with 1 × 104 TCID50 of HIV (BAL and JRCSF strains) via intraperitoneal (i.p.) injection. One week post-HIV infection, animals were switched to a Lieber-DeCarli 5% ethanol diet or an isocaloric control diet for 10 days. Alcohol-fed animals were also given two binges of 2 g/kg ethanol on days 5 and 10. Feces were also collected, banked, and the community structures were analyzed. Mice were then infected with 1 × 105 CFU (colony-forming units) of S. pneumoniae and were sacrificed 48 h later. HIV-infected mice had viral loads of ∼2 × 104 copies/mL of blood 1 week post-infection, and exhibited an ∼57% decrease in the number of circulating CD4+ T cells at the time of sacrifice. Fecal microbial community structure was significantly different in each of the feeding groups, as well as with HIV infection. Alcohol-fed mice had a significantly higher burden of S. pneumoniae 48 h post-infection, regardless of HIV status. In follow-up experiments, female C57BL/6 mice were treated with a cocktail of antibiotics daily for 2 weeks and recolonized by gavage with intestinal microbiota from HIV+ ethanol-fed, HIV+ pair-fed, HIV- ethanol-fed, or HIV- pair-fed mice. Recolonized mice were then infected with S. pneumoniae and were sacrificed 48 h later. The intestinal microbiota from alcohol-fed mice (regardless of HIV status) significantly impaired clearance of S. pneumoniae. Collectively, these data indicate that alcohol feeding, as well as alcohol-associated intestinal dysbiosis, compromise pulmonary host defenses against pneumococcal pneumonia. Determining whether HIV infection acts synergistically with alcohol use in impairing pulmonary host defenses will require additional study.


Subject(s)
Disease Susceptibility/chemically induced , Dysbiosis/microbiology , Ethanol/adverse effects , Gastrointestinal Microbiome/drug effects , HIV Infections/complications , Pneumonia, Pneumococcal/etiology , Animals , Bone Marrow Transplantation , CD4 Lymphocyte Count , Disease Models, Animal , Disease Susceptibility/microbiology , Disease Susceptibility/virology , Dysbiosis/virology , Female , Gastrointestinal Microbiome/genetics , Hematopoietic Stem Cell Transplantation , Humans , Liver Transplantation , Mice , RNA, Ribosomal, 16S/genetics , Thymus Gland/transplantation , Transplantation, Heterologous , Viral Load/drug effects
16.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L107-L117, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28860145

ABSTRACT

Individuals with alcohol use disorders (AUDs) are at an increased risk of pneumonia and acute respiratory distress syndrome. Data of the lung microbiome in the setting of AUDs are lacking. The objective of this study was to determine the microbial biogeography of the upper and lower respiratory tract in individuals with AUDs compared with non-AUD subjects. Gargle, protected bronchial brush, and bronchoalveolar lavage specimens were collected during research bronchoscopies. Bacterial 16S gene sequencing and phylogenetic analysis was performed, and the alterations to the respiratory tract microbiota and changes in microbial biogeography were determined. The microbial structure of the upper and lower respiratory tract was significantly altered in subjects with AUDs compared with controls. Subjects with AUD have greater microbial diversity [ P < 0.0001, effect size = 16 ± 1.7 observed taxa] and changes in microbial species relative abundances. Furthermore, microbial communities in the upper and lower respiratory tract displayed greater similarity in subjects with AUDs. Alcohol use is associated with an altered composition of the respiratory tract microbiota. Subjects with AUDs demonstrate convergence of the microbial phylogeny and taxonomic communities between distinct biogeographical sites within the respiratory tract. These results support a mechanistic pathway potentially explaining the increased incidence of pneumonia and lung diseases in patients with AUDs.


Subject(s)
Alcoholism/complications , DNA, Bacterial/genetics , Microbiota , Respiratory Tract Diseases/microbiology , Respiratory Tract Diseases/pathology , Adult , Bronchoalveolar Lavage , Case-Control Studies , Female , Humans , Male , Phylogeny , RNA, Ribosomal, 16S/genetics , Respiratory Tract Diseases/genetics , Sequence Analysis, DNA
17.
Alcohol ; 66: 35-43, 2018 02.
Article in English | MEDLINE | ID: mdl-29127885

ABSTRACT

On November 18, 2016 the 21st annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the Center for Translational Research and Education at Loyola University Chicago's Health Sciences Campus in Maywood, IL. The 2016 meeting focused broadly on alcohol and inflammation, epigenetics, and the microbiome. The four plenary sessions of the meeting were Alcohol, Inflammation, and Immunity; Alcohol and Epigenetics; Alcohol, Transcriptional Regulation, and Epigenetics; and Alcohol, Intestinal Mucosa, and the Gut Microbiome. Presentations in all sessions of the meeting explored putative underlying causes for chronic diseases and mortality associated with alcohol consumption, shedding light on future work and potential therapeutic targets to alleviate the negative effects of alcohol misuse.


Subject(s)
Alcohol Drinking/immunology , Alcoholism/immunology , Allergy and Immunology , Biomedical Research/methods , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Alcoholism/epidemiology , Alcoholism/genetics , Alcoholism/microbiology , Animals , Epigenesis, Genetic , Gastrointestinal Microbiome , Humans , Inflammation/genetics , Inflammation/immunology
18.
PLoS Pathog ; 13(6): e1006426, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28604843

ABSTRACT

Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis). To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole) via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls) liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control) animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein. Collectively, these results suggest that alterations in the intestinal immune response as a consequence of alcohol-induced dysbiosis contribute to increased host susceptibility to Klebsiella pneumonia.


Subject(s)
Alcohol Drinking/adverse effects , Gastrointestinal Microbiome/drug effects , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Klebsiella pneumoniae , Animals , Disease Models, Animal , Flow Cytometry , Lymphocytes/immunology , Male , Mice , Mice, Inbred C57BL
19.
Exp Lung Res ; 42(8-10): 425-439, 2016.
Article in English | MEDLINE | ID: mdl-27925857

ABSTRACT

BACKGROUND: Pneumocystis pneumonia is a major cause of morbidity and mortality in patients infected with HIV/AIDS. In this study, we evaluated the intestinal microbial communities associated with the development of experimental Pneumocystis pneumonia, as there is growing evidence that the intestinal microbiota is critical for host defense against fungal pathogens. METHODS: C57BL/6 mice were infected with live Pneumocystis murina (P. murina) via intratracheal inoculation and sacrificed 7 and 14 days postinfection for microbiota analysis. In addition, we evaluated the intestinal microbiota from CD4+ T cell depleted mice infected with P. murina. RESULTS: We found that the diversity of the intestinal microbial community was significantly altered by respiratory infection with P. murina. Specifically, mice infected with P. murina had altered microbial populations, as judged by changes in diversity metrics and relative taxa abundances. We also found that CD4+ T cell depleted mice infected with P. murina exhibited significantly altered intestinal microbiota that was distinct from immunocompetent mice infected with P. murina, suggesting that loss of CD4+ T cells may also affects the intestinal microbiota in the setting of Pneumocystis pneumonia. Finally, we employed a predictive metagenomics approach to evaluate various microbial features. We found that Pneumocystis pneumonia significantly alters the intestinal microbiota's inferred functional potential for carbohydrate, energy, and xenobiotic metabolism, as well as signal transduction pathways. CONCLUSIONS: Our study provides insight into specific-microbial clades and inferred microbial functional pathways associated with Pneumocystis pneumonia. Our data also suggest a role for the gut-lung axis in host defense in the lung.


Subject(s)
Gastrointestinal Microbiome , Pneumonia, Pneumocystis/microbiology , Animals , Carbohydrate Metabolism , Energy Metabolism , Host-Pathogen Interactions , Mice , Mice, Inbred C57BL , Pneumonia, Pneumocystis/metabolism , Signal Transduction , Xenobiotics
20.
Front Immunol ; 7: 178, 2016.
Article in English | MEDLINE | ID: mdl-27242785

ABSTRACT

Pneumocystis pneumonia is a major cause of morbidity and mortality among immunocompromised patients, especially in the context of HIV/AIDS. In the murine model of Pneumocystis pneumonia, CD4(+) T-cells are required for clearance of a primary infection of Pneumocystis, but not the memory recall response. We hypothesized that the memory recall response in the absence of CD4(+) T-cells is mediated by a robust memory humoral response, CD8(+) T-cells, and IgG-mediated phagocytosis by alveolar macrophages. To investigate the role of CD8(+) T-cells and alveolar macrophages in the immune memory response to Pneumocystis, mice previously challenged with Pneumocystis were depleted of CD8(+) T-cells or alveolar macrophages prior to re-infection. Mice depleted of CD4(+) T-cells prior to secondary challenge cleared Pneumocystis infection within 48 h identical to immunocompetent mice during a secondary memory recall response. However, loss of CD8(+) T-cells or macrophages prior to the memory recall response significantly impaired Pneumocystis clearance. Specifically, mice depleted of CD8(+) T-cells or alveolar macrophages had significantly higher fungal burden in the lungs. Furthermore, loss of alveolar macrophages significantly skewed the lung CD8(+) T-cell response toward a terminally differentiated effector memory population and increased the percentage of IFN-γ(+) CD8(+) T-cells. Finally, Pneumocystis-infected animals produced significantly more bone marrow plasma cells and Pneumocystis-specific IgG significantly increased macrophage-mediated killing of Pneumocystis in vitro. These data suggest that secondary immune memory responses to Pneumocystis are mediated, in part, by CD8(+) T-cells, alveolar macrophages, and the production of Pneumocystis-specific IgG.

SELECTION OF CITATIONS
SEARCH DETAIL
...