Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108702

ABSTRACT

The 5-lipoxygenase (5-LOX) pathway gives rise to bioactive inflammatory lipid mediators, such as leukotrienes (LTs). 5-LOX carries out the oxygenation of arachidonic acid to the 5-hydroperoxy derivative and then to the leukotriene A4 epoxide which is converted to a chemotactic leukotriene B4 (LTB4) by leukotriene A4 hydrolase (LTA4H). In addition, LTA4H possesses aminopeptidase activity to cleave the N-terminal proline of a pro-inflammatory tripeptide, prolyl-glycyl-proline (PGP). Based on the structural characteristics of LTA4H, it is possible to selectively inhibit the epoxide hydrolase activity while sparing the inactivating, peptidolytic, cleavage of PGP. In the current study, chalcogen-containing compounds, 4-(4-benzylphenyl) thiazol-2-amine (ARM1) and its selenazole (TTSe) and oxazole (TTO) derivatives were characterized regarding their inhibitory and binding properties. All three compounds selectively inhibit the epoxide hydrolase activity of LTA4H at low micromolar concentrations, while sparing the aminopeptidase activity. These inhibitors also block the 5-LOX activity in leukocytes and have distinct inhibition constants with recombinant 5-LOX. Furthermore, high-resolution structures of LTA4H with inhibitors were determined and potential binding sites to 5-LOX were proposed. In conclusion, we present chalcogen-containing inhibitors which differentially target essential steps in the biosynthetic route for LTB4 and can potentially be used as modulators of inflammatory response by the 5-LOX pathway.


Subject(s)
Chalcogens , Epoxide Hydrolases , Leukotriene A4 , Epoxide Hydrolases/metabolism , Arachidonate 5-Lipoxygenase , Aminopeptidases/metabolism
2.
Front Pharmacol ; 13: 806240, 2022.
Article in English | MEDLINE | ID: mdl-35392553

ABSTRACT

The ER stress and Unfolded Protein Response (UPR) component inositol-requiring enzyme 1α (IRE1α) has been linked to inflammation and lipid mediator production. Here we report that the potent IRE1α inhibitor, KIRA6, blocks leukotriene biosynthesis in human phagocytes activated with lipopolysaccharide (LPS) plus N-formyl-methionyl-leucyl-phenylalanine (fMLP) or thapsigargin (Tg). The inhibition affects both leukotriene B4 (LTB4) and cysteinyl leukotriene (cys-LTs) production at submicromolar concentration. Macrophages made deficient of IRE1α were still sensitive to KIRA6 thus demonstrating that the compound's effect on leukotriene production is IRE1α-independent. KIRA6 did not exhibit any direct inhibitory effect on key enzymes in the leukotriene pathway, as assessed by phospholipase A2 (PLA2), 5-lipoxygenase (5-LOX), LTA4 hydrolase (LTA4H), and LTC4 synthase (LTC4S) enzyme activity measurements in cell lysates. However, we find that KIRA6 dose-dependently blocks phosphorylation of p38 and ERK, mitogen-activated protein kinases (MAPKs) that have established roles in activating cytosolic PLA2α (cPLA2α) and 5-LOX. The reduction of p38 and ERK phosphorylation is associated with a decrease in cPLA2α phosphorylation and attenuated leukotriene production. Furthermore, KIRA6 inhibits p38 activity, and molecular modelling indicates that it can directly interact with the ATP-binding pocket of p38. This potent and unexpected, non-canonical effect of KIRA6 on p38 and ERK MAPKs and leukotriene biosynthesis may account for some of the immune-modulating properties of this widely used IRE1α inhibitor.

3.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911767

ABSTRACT

Human phagocytes have key functions in the resolution of inflammation. Here, we assessed the role of the proposed 4S,5S-epoxy-resolvin intermediate in the biosynthesis of both resolvin D3 and resolvin D4. We found that human neutrophils converted this synthetic intermediate to resolvin D3 and resolvin D4. M2 macrophages transformed this labile epoxide intermediate to resolvin D4 and a previously unknown cysteinyl-resolvin isomer without appreciable amounts of resolvin D3. M2 macrophages play critical roles in the resolution of inflammation and in wound healing. Human M2 macrophages also converted leukotriene A4 to lipoxins. The cysteinyl-resolvin isomer significantly accelerated tissue regeneration of surgically injured planaria. In a model of human granuloma formation, the cysteinyl-resolvin isomer significantly inhibited granuloma development by human peripheral blood leukocytes. Together, these results provide evidence for a human cell type-specific role of 4S,5S-epoxy-resolvin in the biosynthesis of resolvin D3 by neutrophils, resolvin D4 by both M2 macrophages and neutrophils, and a unique cysteinyl-resolvin isomer produced by M2 macrophages that carries potent biological activities in granuloma formation and tissue regeneration.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Leukocytes/metabolism , Macrophages/metabolism , Cells, Cultured , Granuloma , Humans
4.
FASEB J ; 35(2): e21193, 2021 02.
Article in English | MEDLINE | ID: mdl-33205517

ABSTRACT

The miRNA biogenesis is tightly regulated to avoid dysfunction and consequent disease development. Here, we describe modulation of miRNA processing as a novel noncanonical function of the 5-lipoxygenase (5-LO) enzyme in monocytic cells. In differentiated Mono Mac 6 (MM6) cells, we found an in situ interaction of 5-LO with Dicer, a key enzyme in miRNA biogenesis. RNA sequencing of small noncoding RNAs revealed a functional impact, knockout of 5-LO altered the expression profile of several miRNAs. Effects of 5-LO could be observed at two levels. qPCR analyses thus indicated that (a) 5-LO promotes the transcription of the evolutionarily conserved miR-99b/let-7e/miR-125a cluster and (b) the 5-LO-Dicer interaction downregulates the processing of pre-let-7e, resulting in an increase in miR-125a and miR-99b levels by 5-LO without concomitant changes in let-7e levels in differentiated MM6 cells. Our observations suggest that 5-LO regulates the miRNA profile by modulating the Dicer-mediated processing of distinct pre-miRNAs. 5-LO inhibits the formation of let-7e which is a well-known inducer of cell differentiation, but promotes the generation of miR-99b and miR-125a known to induce cell proliferation and the maintenance of leukemic stem cell functions.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , MicroRNAs/metabolism , RNA Processing, Post-Transcriptional , Arachidonate 5-Lipoxygenase/genetics , Cell Line, Tumor , Down-Regulation , Humans , MicroRNAs/genetics , Ribonuclease III/metabolism , Transcriptome
5.
Proc Natl Acad Sci U S A ; 117(15): 8573-8583, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32220961

ABSTRACT

Dicer is a ribonuclease III enzyme in biosynthesis of micro-RNAs (miRNAs). Here we describe a regulation of Dicer expression in monocytic cells, based on proteolysis. In undifferentiated Mono Mac 6 (MM6) cells, full-length Dicer was undetectable; only an ∼50-kDa fragment appeared in Western blots. However, when MM6 cells were treated with zymosan or LPS during differentiation with TGF-ß and 1,25diOHvitD3, full-length Dicer became abundant together with varying amounts of ∼170- and ∼50-kDa Dicer fragments. Mass spectrometry identified the Dicer fragments and showed cleavage about 450 residues upstream from the C terminus. Also, PGE2 (prostaglandin E2) added to differentiating MM6 cells up-regulated full-length Dicer, through EP2/EP4 and cAMP. The TLR stimuli strongly induced miR-146a-5p, while PGE2 increased miR-99a-5p and miR-125a-5p, both implicated in down-regulation of TNFα. The Ser protease inhibitor AEBSF (4-[2-aminoethyl] benzene sulfonyl fluoride) up-regulated full-length Dicer, both in MM6 cells and in primary human blood monocytes, indicating a specific proteolytic degradation. However, AEBSF alone did not lead to a general increase in miR expression, indicating that additional mechanisms are required to increase miRNA biosynthesis. Finally, differentiation of monocytes to macrophages with M-CSF or GM-CSF strongly up-regulated full-length Dicer. Our results suggest that differentiation regimens, both in the MM6 cell line and of peripheral blood monocytes, inhibit an apparently constitutive Dicer proteolysis, allowing for increased formation of miRNAs.


Subject(s)
Cell Differentiation , DEAD-box RNA Helicases/metabolism , MicroRNAs/metabolism , Monocytes/metabolism , Prostaglandin-E Synthases/metabolism , Proteolysis , Ribonuclease III/metabolism , Cells, Cultured , DEAD-box RNA Helicases/genetics , Dinoprostone/pharmacology , Hematopoiesis , Humans , Lipopolysaccharides/pharmacology , MicroRNAs/genetics , Monocytes/cytology , Monocytes/drug effects , Prostaglandin-E Synthases/genetics , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Ribonuclease III/genetics , Zymosan/pharmacology
7.
Cancer Lett ; 444: 1-8, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30508568

ABSTRACT

Tumor-derived exosomes can modulate the cancer microenvironment and induce metastatic spread. Exosomes may carry enzymes for leukotriene (LT) biosynthesis, but the role of exosomal LTs has not been studied in cancer. We isolated exosomes and malignant cells from pleura exudates from 14 patients with non-small cell lung cancer. Lipidomic profiles, migration and apoptosis were determined. Both exosomes and primary cancer cells contained γ-glutamyl transpeptidase 1 (GGT-1) and avidly transformed exogenous LTC4 to pro-tumorigenic LTD4, for the cells to levels 100-fold above their endogenous CysLT production. This suggests that cancer cells promote their own survival via LTD4 if supplied with LTC4, which in the exudates was produced by monocytic cells. Furthermore, exosomes promoted migration of cancer cells, which was counteracted by the CysLT1 antagonist montelukast. Montelukast also induced apoptosis of cancer cells, and this was partially inhibited by exosomes. Our results demonstrate how cancer cells and exosomes, together with monocytic cells in lung cancer tissue, can produce high amounts of LTD4, to stimulate cancer cell migration and survival. This suggests that part of the pro-metastatic effect of exosomes is mediated by the leukotriene machinery, further supporting the use of CysLT1 antagonists for lung cancer therapy.


Subject(s)
Cell Movement , Exosomes/metabolism , Leukotriene C4/metabolism , Leukotriene D4/metabolism , Lung Neoplasms/pathology , Pleural Neoplasms/pathology , Receptors, Leukotriene/metabolism , Acetates/pharmacology , Adult , Aged , Aged, 80 and over , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Cyclopropanes , Exosomes/drug effects , Female , Follow-Up Studies , Humans , Leukotriene Antagonists/pharmacology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Middle Aged , Pleural Neoplasms/genetics , Pleural Neoplasms/metabolism , Prognosis , Quinolines/pharmacology , Receptors, Leukotriene/genetics , Sulfides , Survival Rate , Tumor Cells, Cultured
9.
Proc Natl Acad Sci U S A ; 115(8): 1907-1912, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29432192

ABSTRACT

Cysteinyl-leukotrienes (cys-LTs) are 5-lipoxygenase-derived lipid mediators involved in the pathogenesis and progression of inflammatory disorders, in particular asthma. We have previously found evidence linking these mediators to increased levels of proteolytic enzymes in tissue specimens of human abdominal aortic aneurysm (AAA). Here we show that antagonism of the CysLT1 receptor by montelukast, an established antiasthma drug, protects against a strong aorta dilatation (>50% increase = aneurysm) in a mouse model of CaCl2-induced AAA at a dose comparable to human medical practice. Analysis of tissue extracts revealed that montelukast reduces the levels of matrix metalloproteinase-9 (MMP-9) and macrophage inflammatory protein-1α (MIP-1α) in the aortic wall. Furthermore, aneurysm progression was specifically mediated through CysLT1 signaling since a selective CysLT2 antagonist was without effect. A significantly reduced vessel dilatation is also observed when treatment with montelukast is started days after aneurysm induction, suggesting that the drug not only prevents but also stops and possibly reverts an already ongoing degenerative process. Moreover, montelukast reduced the incidence of aortic rupture and attenuated the AAA development in two additional independent models, i.e., angiotensin II- and porcine pancreatic elastase-induced AAA, respectively. Our results indicate that cys-LTs are involved in the pathogenesis of AAA and that antagonism of the CysLT1 receptor is a promising strategy for preventive and therapeutic treatment of this clinically silent and highly lethal disease.


Subject(s)
Acetates/pharmacology , Aortic Aneurysm, Abdominal/prevention & control , Disease Models, Animal , Leukotriene Antagonists/pharmacology , Quinolines/pharmacology , Receptors, Leukotriene/metabolism , Angiotensin II/administration & dosage , Animals , Aortic Aneurysm, Abdominal/metabolism , Chemokine CCL3/metabolism , Cyclopropanes , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout, ApoE , Receptors, Leukotriene/genetics , Sulfides
10.
Proc Natl Acad Sci U S A ; 114(36): 9689-9694, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28827365

ABSTRACT

Human leukotriene (LT) A4 hydrolase/aminopeptidase (LTA4H) is a bifunctional enzyme that converts the highly unstable epoxide intermediate LTA4 into LTB4, a potent leukocyte activating agent, while the aminopeptidase activity cleaves and inactivates the chemotactic tripeptide Pro-Gly-Pro. Here, we describe high-resolution crystal structures of LTA4H complexed with LTA4, providing the structural underpinnings of the enzyme's unique epoxide hydrolase (EH) activity, involving Zn2+, Y383, E271, D375, and two catalytic waters. The structures reveal that a single catalytic water is involved in both catalytic activities of LTA4H, alternating between epoxide ring opening and peptide bond hydrolysis, assisted by E271 and E296, respectively. Moreover, we have found two conformations of LTA4H, uncovering significant domain movements. The resulting structural alterations indicate that LTA4 entrance into the active site is a dynamic process that includes rearrangement of three moving domains to provide fast and efficient alignment and processing of the substrate. Thus, the movement of one dynamic domain widens the active site entrance, while another domain acts like a lid, opening and closing access to the hydrophobic tunnel, which accommodates the aliphatic tale of LTA4 during EH reaction. The enzyme-LTA4 complex structures and dynamic domain movements provide critical insights for development of drugs targeting LTA4H.


Subject(s)
Epoxide Hydrolases/chemistry , Epoxide Hydrolases/metabolism , Leukotriene B4/biosynthesis , Amino Acid Substitution , Catalytic Domain , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/genetics , Humans , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Zinc/metabolism
11.
J Clin Invest ; 127(8): 3167-3176, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28737505

ABSTRACT

Proinflammatory leukotrienes (LTs) are produced by 5-lipoxygenase (5-LO) aided by 5-LO-activating protein (FLAP). LT biosynthesis inhibitors are currently under clinical investigation as treatments for respiratory and cardiovascular diseases. Here, we have revealed a sex bias in the efficiency of clinically relevant LT biosynthesis inhibitors, showing that their effects are superior in females. We found that androgens cause these sex differences by impeding the LT-biosynthetic 5-LO/FLAP complex assembly. Lower doses of the FLAP inhibitor MK886 were required to reduce LTB4 levels in exudates of female versus male mice and rats. Following platelet-activating factor-induced shock, MK886 increased survival exclusively in female mice, and this effect was abolished by testosterone administration. FLAP inhibitors and the novel-type 5-LO inhibitors licofelone and sulindac sulfide exhibited higher potencies in human blood from females, and bioactive 5-LO/FLAP complexes were formed in female, but not male, human and murine leukocytes. Supplementation of female blood or leukocytes with 5α-dihydrotestosterone abolished the observed sex differences. Our data suggest that females may benefit from anti-LT therapy to a greater extent than males, prompting consideration of sex issues in LT modifier development.


Subject(s)
Androgens/metabolism , Leukotrienes/biosynthesis , Sex Factors , Testosterone/administration & dosage , 5-Lipoxygenase-Activating Proteins/metabolism , Animals , Arachidonate 5-Lipoxygenase/metabolism , Dihydrotestosterone/metabolism , Female , Humans , Hydroxyurea/analogs & derivatives , Hydroxyurea/pharmacology , Leukocytes/metabolism , Lipoxygenase Inhibitors/pharmacology , Male , Mice , Pyrroles/administration & dosage , Rats , Rats, Wistar , Sulindac/administration & dosage , Sulindac/analogs & derivatives , Testosterone/metabolism
12.
FASEB J ; 31(10): 4370-4381, 2017 10.
Article in English | MEDLINE | ID: mdl-28637652

ABSTRACT

M1 and M2 activated macrophages (Mϕs) have different roles in inflammation. Because pathogens may first encounter resting cells, we investigated lipid mediator profiles prior to full activation. Human monocytes were differentiated with granulocyte Mϕ colony-stimulating factor (GM-CSF) or Mϕ colony-stimulating factor (M-CSF), which are known to prime toward M1 or M2 phenotypes, respectively. Lipid mediators released during resting conditions and produced in response to bacterial stimuli (LPS/N-formylmethionyl-leucyl-phenylalanine or peptidoglycan) were quantified by liquid chromatography-mass spectrometry. In resting conditions, both Mϕ phenotypes released primarily proresolving lipid mediators (prostaglandin E2 metabolite, lipoxin A4, and 18-hydroxyeicosapentaenoic acid). A striking shift toward proinflammatory eicosanoids was observed when the same cells were exposed (30 min) to bacterial stimuli: M-CSF Mϕs produced considerably more 5-lipoxygenase products, particularly leukotriene C4, potentially linked to M2 functions in asthma. Prostaglandins were formed by both Mϕ types. In the M-CSF cells, there was also an enhanced release of arachidonic acid and activation of cytosolic phospholipase A2 However, GM-CSF cells expressed higher levels of 5-lipoxygenase and 5-lipoxygenase-activating protein, and in ionophore incubations these cells also produced the highest levels of 5-hydroxyeicosatetraenoic acid. In summary, GM-CSF and M-CSF Mϕs displayed similar proresolving lipid mediator formation in resting conditions but shifted toward different proinflammatory eicosanoids upon bacterial stimuli. This demonstrates that preference for specific eicosanoid pathways is primed by CSFs before full M1/M2 activation.-Lukic, A., Larssen, P., Fauland, A., Samuelsson, B., Wheelock, C. E., Gabrielsson, S., Radmark, O. GM-CSF- and M-CSF-primed macrophages present similar resolving but distinct inflammatory lipid mediator signatures.


Subject(s)
Cell Differentiation/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Lipid Metabolism/drug effects , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/drug effects , Monocytes/drug effects , Arachidonate 5-Lipoxygenase/metabolism , Eicosanoids/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Inflammation/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/metabolism , Monocytes/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Platelet Activating Factor/metabolism
13.
J Lipid Res ; 57(9): 1659-69, 2016 09.
Article in English | MEDLINE | ID: mdl-27436590

ABSTRACT

Leukotrienes (LTs) play major roles in lung immune responses, and LTD4 is the most potent agonist for cysteinyl LT1, leading to bronchoconstriction and tissue remodeling. Here, we studied LT crosstalk between myeloid cells and pulmonary epithelial cells. Monocytic cells (Mono Mac 6 cell line, primary dendritic cells) and eosinophils produced primarily LTC4 In coincubations of these myeloid cells and epithelial cells, LTD4 became a prominent product. LTC4 released from the myeloid cells was further transformed by the epithelial cells in a transcellular manner. Formation of LTD4 was rapid when catalyzed by γ-glutamyl transpeptidase (GGT)1 in the A549 epithelial lung cancer cell line, but considerably slower when catalyzed by GGT5 in primary bronchial epithelial cells. When A549 cells were cultured in the presence of IL-1ß, GGT1 expression increased about 2-fold. Also exosomes from A549 cells contained GGT1 and augmented LTD4 formation. Serine-borate complex (SBC), an inhibitor of GGT, inhibited conversion of LTC4 to LTD4 Unexpectedly, SBC also upregulated translocation of 5-lipoxygenase (LO) to the nucleus in Mono Mac 6 cells, and 5-LO activity. Our results demonstrate an active role for epithelial cells in biosynthesis of LTD4, which may be of particular relevance in the lung.


Subject(s)
Leukotriene C4/genetics , Leukotriene D4/genetics , Lung Neoplasms/immunology , gamma-Glutamyltransferase/genetics , A549 Cells , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Borates/administration & dosage , Eosinophils/immunology , Eosinophils/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Exosomes/immunology , Exosomes/metabolism , Humans , Immunity, Cellular/genetics , Leukotriene C4/biosynthesis , Leukotriene D4/biosynthesis , Lung/immunology , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Myeloid Cells/metabolism , Myeloid Cells/pathology , Serine/administration & dosage , gamma-Glutamyltransferase/antagonists & inhibitors
14.
Proc Natl Acad Sci U S A ; 113(4): 972-7, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26755582

ABSTRACT

Microsomal prostaglandin E2 synthase type 1 (mPGES-1) is responsible for the formation of the potent lipid mediator prostaglandin E2 under proinflammatory conditions, and this enzyme has received considerable attention as a drug target. Recently, a high-resolution crystal structure of human mPGES-1 was presented, with Ser-127 being proposed as the hydrogen-bond donor stabilizing thiolate anion formation within the cofactor, glutathione (GSH). We have combined site-directed mutagenesis and activity assays with a structural dynamics analysis to probe the functional roles of such putative catalytic residues. We found that Ser-127 is not required for activity, whereas an interaction between Arg-126 and Asp-49 is essential for catalysis. We postulate that both residues, in addition to a crystallographic water, serve critical roles within the enzymatic mechanism. After characterizing the size or charge conservative mutations Arg-126-Gln, Asp-49-Asn, and Arg-126-Lys, we inferred that a crystallographic water acts as a general base during GSH thiolate formation, stabilized by interaction with Arg-126, which is itself modulated by its respective interaction with Asp-49. We subsequently found hidden conformational ensembles within the crystal structure that correlate well with our biochemical data. The resulting contact signaling network connects Asp-49 to distal residues involved in GSH binding and is ligand dependent. Our work has broad implications for development of efficient mPGES-1 inhibitors, potential anti-inflammatory and anticancer agents.


Subject(s)
Dipeptides/chemistry , Intramolecular Oxidoreductases/chemistry , Microsomes/enzymology , Catalysis , Catalytic Domain , Crystallography, X-Ray , Glutathione/metabolism , Intramolecular Oxidoreductases/metabolism , Ligands , Mutagenesis, Site-Directed , Prostaglandin-E Synthases , Protein Conformation
16.
Biochim Biophys Acta ; 1851(4): 331-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25152163

ABSTRACT

5-Lipoxygenase (5-LOX) catalyzes two steps in the biosynthesis of leukotrienes (LTs), lipid mediators of inflammation derived from arachidonic acid. In this review we focus on 5-LOX biochemistry including 5-LOX interacting proteins and regulation of enzyme activity. LTs function in normal host defense, and have roles in many disease states where acute or chronic inflammation is part of the pathophysiology, as briefly summarized at the end of this chapter. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Fatty Acids, Unsaturated/metabolism , Inflammation/enzymology , Leukotrienes/metabolism , Animals , Arachidonate 5-Lipoxygenase/chemistry , Catalysis , Homeostasis , Humans , Models, Molecular , Protein Conformation , Signal Transduction , Structure-Activity Relationship
17.
Proc Natl Acad Sci U S A ; 111(31): 11371-6, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25034252

ABSTRACT

5-Lipoxygenase (5LO) is a key enzyme in leukotriene (LT) biosynthesis. Two accessory proteins, coactosin-like protein (CLP) and 5-lipoxygenase-activating protein (FLAP), can support 5LO activity. To study the roles of CLP and FLAP, we knocked down these proteins in the human monocytic cell line Mono Mac 6 (MM6). Expression of CLP increased MM6 cellular 5LO activity for all stimuli tested. CLP is not absolutely crucial, however; some 5LO activity remained in all incubations of CLP knockdown cells. FLAP knockdown had minor effects in the presence of exogenous arachidonic acid, but led to prominent reductions in 5LO product formation from endogenous substrate. Similar effects were observed after CLP and FLAP knockdown in human primary macrophages as well. In addition, FLAP knockdown reduced conversion of leukotriene A4 to leukotriene C4 (LTC4), suggesting a role for the activity of LTC4 synthase. After stimulation of MM6 cells by phorbol myristate acetate and ionophore A23187, a perinuclear ring pattern was observed for 5LO. This redistribution from cytosolic to perinuclear was clearly compromised in both CLP- and FLAP-deficient cells. In addition, association of CLP with the nucleus was almost absent after 5LO knockdown, and was clearly reduced in FLAP knockdown cells. Coimmunoprecipitation experiments indicated that 5LO-CLP complex formation in MM6 cells was increased by stimulation with ionophore, and that this complex was formed to the same extent in FLAP knockdown cells. A possible interpretation of our findings is that on cell stimulation, formation of the 5LO-CLP complex augments the translocation from cytosol to nucleus, whereas FLAP stabilizes association of this complex with the perinuclear membrane.


Subject(s)
5-Lipoxygenase-Activating Proteins/metabolism , Leukotrienes/biosynthesis , Microfilament Proteins/metabolism , Monocytes/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Arachidonic Acid/pharmacology , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Gene Knockdown Techniques , Humans , Immunohistochemistry , Immunoprecipitation , Intracellular Membranes/drug effects , Intracellular Membranes/metabolism , Ionophores/pharmacology , Leukotriene C4/biosynthesis , Models, Biological , Monocytes/drug effects , Monocytes/enzymology , Protein Binding/drug effects
18.
Proc Natl Acad Sci U S A ; 111(11): 4227-32, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24591641

ABSTRACT

Leukotriene (LT) A4 hydrolase/aminopeptidase (LTA4H) is a bifunctional zinc metalloenzyme that catalyzes the committed step in the formation of the proinflammatory mediator LTB4. Recently, the chemotactic tripeptide Pro-Gly-Pro was identified as an endogenous aminopeptidase substrate for LTA4 hydrolase. Here, we determined the crystal structure of LTA4 hydrolase in complex with a Pro-Gly-Pro analog at 1.72 Å. From the structure, which includes the catalytic water, and mass spectrometric analysis of enzymatic hydrolysis products of Pro-Gly-Pro, it could be inferred that LTA4 hydrolase cleaves at the N terminus of the palindromic tripeptide. Furthermore, we designed a small molecule, 4-(4-benzylphenyl)thiazol-2-amine, denoted ARM1, that inhibits LTB4 synthesis in human neutrophils (IC50 of ∼0.5 µM) and conversion of LTA4 into LTB4 by purified LTA4H with a Ki of 2.3 µM. In contrast, 50- to 100-fold higher concentrations of ARM1 did not significantly affect hydrolysis of Pro-Gly-Pro. A 1.62-Å crystal structure of LTA4 hydrolase in a dual complex with ARM1 and the Pro-Gly-Pro analog revealed that ARM1 binds in the hydrophobic pocket that accommodates the ω-end of LTA4, distant from the aminopeptidase active site, thus providing a molecular basis for its inhibitory profile. Hence, ARM1 selectively blocks conversion of LTA4 into LTB4, although sparing the enzyme's anti-inflammatory aminopeptidase activity (i.e., degradation and inactivation of Pro-Gly-Pro). ARM1 represents a new class of LTA4 hydrolase inhibitor that holds promise for improved anti-inflammatory properties.


Subject(s)
Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Inflammation/enzymology , Models, Molecular , Oligopeptides/metabolism , Proline/analogs & derivatives , Protein Conformation , Thiazoles/pharmacology , Catalytic Domain/genetics , Chromatography, High Pressure Liquid , Crystallization , Epoxide Hydrolases/chemistry , Epoxide Hydrolases/genetics , Escherichia coli , Humans , Inflammation/drug therapy , Proline/metabolism , Tandem Mass Spectrometry , Thiazoles/chemistry , X-Ray Diffraction
19.
Arch Biochem Biophys ; 545: 179-85, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24480307

ABSTRACT

5-Lipoxygenase (5-LOX) catalyzes two steps in conversion of arachidonic acid to proinflammatory leukotrienes. Lipoxygenases, including human 5-LOX, consist of an N-terminal C2-like ß-sandwich and a catalytic domain. We expressed the 5-LOX domains separately, these were found to interact in the yeast two-hybrid system. The 5-LOX structure suggested association between Arg(101) in the ß-sandwich and Asp(166) in the catalytic domain, due to electrostatic interaction as well as hydrogen bonds. Indeed, mutagenic replacements of these residues led to loss of two-hybrid interaction. Interestingly, when Arg(101) was mutated to Asp in intact 5-LOX, enzyme activity was increased. Thus, higher initial velocity of the reaction (vinit) and increased final amount of products were monitored for 5-LOX-R101D, at several different assay conditions. In the 5-LOX crystal structure, helix α2 and adjacent loops (including Asp(166)) of the 5-LOX catalytic domain has been proposed to form a flexible lid controlling access to the active site, and lid movement would be determined by bonding of lid residues to the C2-like ß-sandwich. The more efficient catalysis following disruption of the R101-D166 ionic association supports the concept of such a flexible lid in human 5-LOX.


Subject(s)
Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/metabolism , Amino Acid Sequence , Arachidonate 5-Lipoxygenase/genetics , Catalytic Domain , Enzyme Activation , Humans , Leukotrienes/metabolism , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Point Mutation , Protein Structure, Tertiary
20.
J Biol Chem ; 287(13): 10070-10080, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22318727

ABSTRACT

The role of basic science in the development of health care has received more and more attention. In my own area of research involving the so-called eicosanoids, there are many examples of how studies of structure and function of small molecules, as well as proteins and genes, have led to new therapeutic agents for treatment of a variety of diseases. In most of the cases, the discoveries have resulted in the recognition of novel therapeutic targets amenable to modulation by small molecules. However, there are also examples in which the molecular mechanisms of actions of drugs, discovered by phenotypic screening, have been elucidated. The majority of the examples in this article consist of approved drugs; however, in some cases, ongoing developments of potential therapeutics are cited.


Subject(s)
Biomedical Research/history , Eicosanoids/history , Pharmacokinetics , Animals , Biomedical Research/methods , Eicosanoids/genetics , Eicosanoids/metabolism , Eicosanoids/pharmacology , History, 20th Century , History, 21st Century , Humans , Portraits as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...