Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 126(14): 141301, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33891448

ABSTRACT

We present the first joint analysis of cluster abundances and auto or cross-correlations of three cosmic tracer fields: galaxy density, weak gravitational lensing shear, and cluster density split by optical richness. From a joint analysis (4×2pt+N) of cluster abundances, three cluster cross-correlations, and the auto correlations of the galaxy density measured from the first year data of the Dark Energy Survey, we obtain Ω_{m}=0.305_{-0.038}^{+0.055} and σ_{8}=0.783_{-0.054}^{+0.064}. This result is consistent with constraints from the DES-Y1 galaxy clustering and weak lensing two-point correlation functions for the flat νΛCDM model. Consequently, we combine cluster abundances and all two-point correlations from across all three cosmic tracer fields (6×2pt+N) and find improved constraints on cosmological parameters as well as on the cluster observable-mass scaling relation. This analysis is an important advance in both optical cluster cosmology and multiprobe analyses of upcoming wide imaging surveys.

2.
Phys Rev Lett ; 124(10): 101102, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32216401

ABSTRACT

In recent years, many γ-ray sources have been identified, yet the unresolved component hosts valuable information on the faintest emission. In order to extract it, a cross-correlation with gravitational tracers of matter in the Universe has been shown to be a promising tool. We report here the first identification of a cross-correlation signal between γ rays and the distribution of mass in the Universe probed by weak gravitational lensing. We use data from the Dark Energy Survey Y1 weak lensing data and the Fermi Large Area Telescope 9-yr γ-ray data, obtaining a signal-to-noise ratio of 5.3. The signal is mostly localized at small angular scales and high γ-ray energies, with a hint of correlation at extended separation. Blazar emission is likely the origin of the small-scale effect. We investigate implications of the large-scale component in terms of astrophysical sources and particle dark matter emission.

SELECTION OF CITATIONS
SEARCH DETAIL
...