Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349020

ABSTRACT

Colocalisation microscopy analysis provides an intuitive and straightforward way of determining if two biomolecules occupy the same diffraction-limited volume. A popular colocalisation coefficient, the Pearson's correlation coefficient (PCC), can be calculated using different pixel selection criteria: PCCALL includes all image pixels, PCCOR only pixels exceeding the intensity thresholds for either one of the detection channels, and PCCAND only pixels exceeding the intensity thresholds for both detection channels. Our results show that PCCALL depends on the foreground to background ratio, producing values influenced by factors unrelated to biomolecular association. PCCAND focuses on areas with the highest intensities in both channels, which allows it to detect low levels of colocalisation, but makes it inappropriate for evaluating spatial cooccurrence between the signals. PCCOR produces values influenced both by signal proportionality and spatial cooccurrence but can sometimes overemphasise the lack of the latter. Overall, PCCAND excels at detecting low levels of colocalisation, PCCOR provides a balanced quantification of signal proportionality and spatial coincidence, and PCCALL risks misinterpretation yet avoids segmentation challenges. Awareness of their distinct properties should inform their appropriate application with the aim of accurately representing the underlying biology.

2.
J Exp Bot ; 74(6): 1821-1835, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36639877

ABSTRACT

Plasmodesmata are cytosolic bridges, lined by the plasma membrane and traversed by endoplasmic reticulum; plasmodesmata connect cells and tissues, and are critical for many aspects of plant biology. While plasmodesmata are notoriously difficult to extract, tissue fractionation and proteomic analyses can yield valuable knowledge of their composition. Here we have generated two novel proteomes to expand tissue and taxonomic representation of plasmodesmata: one from mature Arabidopsis leaves and one from the moss Physcomitrium patens, and leveraged these and existing data to perform a comparative analysis to identify evolutionarily conserved protein families that are associated with plasmodesmata. Thus, we identified ß-1,3-glucanases, C2 lipid-binding proteins, and tetraspanins as core plasmodesmal components that probably serve as essential structural or functional components. Our approach has not only identified elements of a conserved plasmodesmal proteome, but also demonstrated the added power offered by comparative analysis for recalcitrant samples. Conserved plasmodesmal proteins establish a basis upon which ancient plasmodesmal function can be further investigated to determine the essential roles these structures play in multicellular organism physiology in the green lineages.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plasmodesmata/metabolism , Proteomics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Proteome/metabolism
3.
Methods Mol Biol ; 2457: 263-272, 2022.
Article in English | MEDLINE | ID: mdl-35349146

ABSTRACT

Plant cells are connected by cytoplasmic bridges called plasmodesmata. Plasmodesmata are lined by the plasma membrane, essentially forming tunnels that directly connect the cytoplasm of adjacent cells through which soluble molecules can move from cell to cell. This cell-to-cell mobility is underpinned by cytoplasmic advection and diffusion in a manner dependent on molecular size. This movement of molecules is regulated by the aperture of plasmodesmata. GREEN FLUORESCENT PROTEIN (GFP) is a 27 kDa soluble protein that can move passively between cells via plasmodesmata. Thus, it serves as an ideal probe to assess plasmodesmal aperture. GFP can be transgenically produced in single cells by microprojectile bombardment-mediated transformation, and its cell-to-cell mobility can be measured by live-cell imaging and counting the number of cells (or cell layers) to which it has moved. Thus, the number of cells in which GFP is visible serves as a measure of plasmodesmal aperture and functional cell-to-cell connectivity. Here we present methods for microprojectile bombardment of GFP into leaf epidermal cells and statistical analysis of resulting data.


Subject(s)
Nicotiana , Plasmodesmata , Cytoplasm/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Plant Leaves/metabolism , Plasmodesmata/metabolism , Nicotiana/metabolism
4.
Proc Natl Acad Sci U S A ; 117(17): 9621-9629, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32284410

ABSTRACT

The plasma membrane (PM) is composed of heterogeneous subdomains, characterized by differences in protein and lipid composition. PM receptors can be dynamically sorted into membrane domains to underpin signaling in response to extracellular stimuli. In plants, the plasmodesmal PM is a discrete microdomain that hosts specific receptors and responses. We exploited the independence of this PM domain to investigate how membrane domains can independently integrate a signal that triggers responses across the cell. Focusing on chitin signaling, we found that responses in the plasmodesmal PM require the LysM receptor kinases LYK4 and LYK5 in addition to LYM2. Chitin induces dynamic changes in the localization, association, or mobility of these receptors, but only LYM2 and LYK4 are detected in the plasmodesmal PM. We further uncovered that chitin-induced production of reactive oxygen species and callose depends on specific signaling events that lead to plasmodesmata closure. Our results demonstrate that distinct membrane domains can integrate a common signal with specific machinery that initiates discrete signaling cascades to produce a localized response.


Subject(s)
Arabidopsis/physiology , Chitin/metabolism , Nicotiana/physiology , Plasmodesmata/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biomechanical Phenomena , Cell Membrane/physiology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Mechanotransduction, Cellular/physiology , Plant Leaves/physiology , Protein Kinases/genetics , Protein Kinases/metabolism , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...