Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 14(29): 21203-21212, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38966817

ABSTRACT

The coronavirus disease 2019 (COVID-19) has spread worldwide with severe health, social, and economic repercussions. Although vaccines have significantly reduced the severity of symptoms and deaths, alternative medications derived from natural products (NPs) are vital to further decrease fatalities, especially in regions with low vaccine uptake. When paired with the latest computational developments, NPs, which have been used to cure illnesses and infections for thousands of years, constitute a renewed resource for drug discovery. In the present report, a combination of computational and in vitro methods reveals the repositioning of NPs and identifies salvinorin A and deacetylgedunin (DCG) as having potential anti-SARS-CoV-2 activities. Salvinorin A was found both in silico and in vitro to inhibit both SARS-CoV-2 spike/host ACE2 protein interactions, consistent with blocking viral cell entry, and well as live virus replication. Plant extracts from Azadirachta indica and Cedrela odorata, which contain high levels of DCG, inhibited viral cell replication by targeting the main protease (Mpro) and/or inhibited viral cell entry by blocking the interaction between spike RBD-ACE2 protein at concentrations lower than salvinorin A. Our findings suggest that salvinorin A represent promising chemical starting points where further optimization may result in effective natural product-derived and potent anti-SARS-CoV-2 inhibitors to supplement vaccine efforts.

2.
Nat Prod Res ; 36(11): 2821-2829, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34044677

ABSTRACT

Two new arabinofuranosidetridecanol, namely 1,2-tridecanediol-1-O-α-L-5'-acetylarabinofuranoside (1) and 1,2-tridecanediol-1-O-α-L-arabinofuranoside (2) together with known compound, 1,2-tridecanediol (3) were isolated from Commiphora merkeri exudate. Compound 1 showed larvicidal activity against Ae. aegypti (LC50 = 40.66 µg/mL), An. gambiae (LC50 = 22.86 µg/mL) and Cx. quinquefasciatus (LC50 = 15.88 µg/mL). Also, Compound 2 had larvicidal activity against Ae. aegypti (LC50 = 33.79 µg/mL), An. gambiae (LC50 = 31.99 µg/mL) and Cx. quinquefasciatus (LC50 = 17.70 µg/mL). There were no significant difference of larvae mortalities (≥ 95%) among the two compounds and among mosquito species except for compound 2 at 72 h for Cx. quinquefasciatus and An. gambiae. Compound 3 was not larvicidal active even after 72 h of exposure time. In addition, none of the compound was cytotoxic to brine shrimps. The two Arabinofuranosidetridecanol are potential against mosquito species and they could be safe in the environment.


Subject(s)
Aedes , Culex , Insecticides , Animals , Commiphora , Exudates and Transudates , Insecticides/pharmacology , Larva , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL