Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38773235

ABSTRACT

BACKGROUND: We previously demonstrated that aluminum cookware brought from Afghanistan by resettled families as well as some aluminum cookware available for purchase in the United States represent a previously unrecognized source of lead exposure. However, the extent to which this cookware represents a source of lead exposure to other United States residents is unclear. OBJECTIVES: To test additional cookware for lead content and its propensity to leach lead and other toxic metals. This will further our understanding of the extent to which this cookware represents a lead poisoning risk in the United States and elsewhere. METHODS: We screened an additional 28 pieces of aluminum cookware and 5 brass items for lead content using an X-ray fluorescence (XRF) analyzer and used our leachate method to estimate the amount of lead that migrates into food. We also tested 17 additional stainless steel items to determine whether they would be safer alternatives. RESULTS: Many aluminum cookware products contained in excess of 100 parts per million (ppm) of lead. Many also leached enough lead under simulated cooking and storage conditions to exceed recommended dietary limits. One hindalium appam pan (an Indian frying pan/wok) leached sufficient lead to exceed the childhood limit by 1400-fold. Brass cookpots from India also yielded high lead levels, with one exceeding the childhood limit by over 1200-fold. In contrast, stainless steel cookware leached much lower levels of lead. IMPACT: Aluminum and brass cookware available for purchase in the United States represents a previously unrecognized source of lead exposure.

2.
Environ Res ; 252(Pt 4): 119072, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729411

ABSTRACT

BACKGROUND: Per- and poly-fluorinated compounds (PFAS) and heavy metals constitute two classes of environmental exposures with known immunotoxicant effects. In this pilot study, we aimed to evaluate the impact of exposure to heavy metals and PFAS on COVID-19 severity. We hypothesized that elevated plasma-PFAS concentrations and urinary heavy metal concentrations would be associated with increased odds of ICU admission in COVID-19 hospitalized individuals. METHODS: Using the University of Southern California Clinical Translational Sciences Institute (SC-CTSI) biorepository of hospitalized COVID-19 patients, urinary concentrations of 15 heavy metals and urinary creatinine were measured in n = 101 patients and plasma concentrations of 13 PFAS were measured in n = 126 patients. COVID-19 severity was determined based on whether a patient was admitted to the ICU during hospitalization. Associations of metals and PFAS with ICU admission were assessed using logistic regression models, controlling for age, sex, ethnicity, smoking status, and for metals, urinary dilution. RESULTS: The average age of patients was 55 ± 14.2 years. Among SC-CTSI participants with urinary measurement of heavy metals and blood measures of PFAS, 54.5% (n = 61) and 54.8% (n = 80) were admitted to the ICU, respectively. For heavy metals, we observed higher levels of Cd, Cr, and Cu in ICU patients. The strongest associations were with Cadmium (Cd). After accounting for covariates, each 1 SD increase in Cd resulted in a 2.00 (95% CI: 1.10-3.60; p = 0.03) times higher odds of admission to the ICU. When including only Hispanic or Latino participants, the effect estimates between cadmium and ICU admission remained similar. Results for PFAS were less consistent, with perfluorodecanesulfonic acid (PFDS) exhibiting a positive but non-significant association with ICU admission (Odds ratio, 95% CI: 1.50, 0.97-2.20) and perfluorodecanoic acid (PFDA) exhibiting a negative association with ICU admission (0.53, 0.31-0.88). CONCLUSIONS: This study supports the hypothesis that environmental exposures may impact COVID-19 severity.


Subject(s)
COVID-19 , Environmental Exposure , Environmental Pollutants , Hispanic or Latino , Metals, Heavy , Humans , Middle Aged , Male , Female , Hispanic or Latino/statistics & numerical data , Environmental Pollutants/urine , Environmental Pollutants/blood , Aged , Adult , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Metals, Heavy/urine , Metals, Heavy/blood , Risk Factors , Pilot Projects , Fluorocarbons/blood , Fluorocarbons/urine , Hospitalization/statistics & numerical data , Intensive Care Units/statistics & numerical data , SARS-CoV-2
3.
Neurotoxicology ; 102: 96-105, 2024 May.
Article in English | MEDLINE | ID: mdl-38582332

ABSTRACT

BACKGROUND: Manganese (Mn) is an essential micronutrient as well as a well-established neurotoxicant. Occupational and environmental exposures may bypass homeostatic regulation and lead to increased systemic Mn levels. Translocation of ultrafine ambient airborne particles via nasal neuronal pathway to olfactory bulb and tract may be an important pathway by which Mn enters the central nervous system. OBJECTIVE: To measure olfactory tract/bulb tissue metal concentrations in Mn-exposed and non-exposed mineworkers. METHODS: Using inductively coupled plasma-mass spectrometry (ICP-MS), we measured and compared tissue metal concentrations in unilateral olfactory tracts/bulbs of 24 Mn-exposed and 17 non-exposed South African mineworkers. We used linear regression to investigate the association between cumulative Mn exposures and olfactory tract/bulb Mn concentration. RESULTS: The difference in mean olfactory tract/bulb Mn concentrations between Mn-exposed and non-Mn exposed mineworkers was 0.16 µg/g (95% CI -0.11, 0.42); but decreased to 0.09 µg/g (95% CI 0.004, 0.18) after exclusion of one influential observation. Olfactory tract/bulb metal concentration and cumulative Mn exposure suggested there may be a positive association; for each mg Mn/m3-year there was a 0.05 µg/g (95% CI 0.01, 0.08) greater olfactory tract/bulb Mn concentration overall, but -0.003 (95% CI -0.02, 0.02) when excluding the three influential observations. Recency of Mn exposure was not associated with olfactory tract/bulb Mn concentration. CONCLUSIONS: Our findings suggest that Mn-exposed mineworkers might have higher olfactory tract/bulb tissue Mn concentrations than non-Mn exposed mineworkers, and that concentrations might depend more on cumulative dose than recency of exposure.


Subject(s)
Manganese , Occupational Exposure , Olfactory Bulb , Humans , Adult , Male , Occupational Exposure/adverse effects , Middle Aged , Olfactory Bulb/drug effects , Olfactory Bulb/metabolism , Olfactory Pathways/drug effects , Olfactory Pathways/metabolism , Female , Mining , South Africa , Young Adult
4.
J Expo Sci Environ Epidemiol ; 32(3): 451-460, 2022 05.
Article in English | MEDLINE | ID: mdl-35501355

ABSTRACT

BACKGROUND: Afghan refugee children resettled in Washington State have the highest prevalence of elevated blood lead levels (BLLs) of any other refugee or immigrant population. Resettled families brought several lead-containing items with them from Afghanistan, including aluminum cookpots. OBJECTIVES: To evaluate the potential contribution of lead-containing cookpots to elevated BLLs in Afghan children and determine whether safer alternative cookware is available. METHODS: We screened 40 aluminum cookpots for lead content using an X-ray fluorescence (XRF) analyzer and used a leachate method to estimate the amount of lead that migrates into food. We also tested five stainless steel cookpots to determine whether they would be safer alternatives. RESULTS: Many aluminum cookpots contained lead in excess of 100 parts per million (ppm), with a highest detected concentration of 66,374 ppm. Many also leached sufficient lead under simulated cooking and storage conditions to exceed recommended dietary limits. One pressure cooker leached sufficient lead to exceed the childhood limit by 650-fold. In contrast, stainless steel cookpots leached much lower levels of lead. SIGNIFICANCE: Aluminum cookpots used by refugee families are likely associated with elevated BLLs in local Afghan children. However, this investigation revealed that other U.S. residents, including adults and children, are also at risk of poisoning by lead and other toxic metals from some imported aluminum cookpots. IMPACT STATEMENT: Some aluminum cookware brought from Afghanistan by resettled families as well as cookpots available for purchase in the United States represent a previously unrecognized source of lead exposure.


Subject(s)
Lead Poisoning , Refugees , Adult , Aluminum , Child , Humans , Lead , Lead Poisoning/epidemiology , Stainless Steel , United States
5.
Acta Radiol ; 63(3): 345-350, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33588575

ABSTRACT

BACKGROUND: Generally, studies of gadolinium (Gd) deposition in humans measure concentration by analyzing formalin fixed postmortem tissue. However, the effect of formalin fixation on measured Gd concentration has not been well investigated. PURPOSE: To evaluate the effect of fixation by comparing Gd concentration in fresh versus formalin-fixed postmortem human tissues. MATERIAL AND METHODS: Fresh samples of bone and skin were collected from autopsy cases with previous exposure to Gd-based contrast agents (GBCAs). The type of GBCA administered, dose, and estimated glomerular filtration rate were recorded. Each tissue sample was cut into three aliquots. Paired samples were stored fresh frozen while the remaining two were stored in 10% neutral buffered formalin for one and three months, respectively. Gd concentration was measured using ICP-MS. RESULTS: Of 18 autopsy cases studied, 12 were exposed to only macrocyclic GBCA, one to only linear agents, and five received both macrocyclic and linear agents. On average, Gd concentration for bone decreased 30.7% after one month of fixation (P = 0.043) compared to non-fixed values. There was minimal, if any, change in concentration between one and three months (average decrease 1.5%; P = 0.89). The findings were numerically similar for skin tissue with an average decrease of 36.9% after one month (P = 0.11) and 6.0% (P = 0.73) between one and three months. CONCLUSION: Formalin fixation appears to decrease Gd concentration in bone and skin by approximately 30%-40% on average. The largest decrease occurs within the first 30 days of fixation followed by a considerably smaller decrease at 60 days.


Subject(s)
Autopsy , Bone and Bones/chemistry , Contrast Media/analysis , Gadolinium/analysis , Skin/chemistry , Tissue Fixation , Buffers , Fixatives/pharmacology , Formaldehyde/pharmacology , Glomerular Filtration Rate , Humans , Time Factors
6.
Anal Bioanal Chem ; 401(10): 3103-13, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21769550

ABSTRACT

Methodology for detection of native (underivatized) amino acids (AA) in atmospheric aerosols has been developed. This article describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southeastern U.S. forest environment. Accurate mass detection and the addition of isotopically labeled surrogates prior to sample preparation allows for sensitive quantitation of target AA in a complex aerosol matrix. A total of 16 native AA were detected above the reporting threshold as water-soluble free AA, with an average concentration of 22 ± 9 ng m(-3) (N = 13). Following microwave-assisted gas phase hydrolysis, the total AA concentration in the forest environment increased significantly (70 ± 35 ng m(-3)) and additional compounds (methionine, isoleucine) were detected above the reporting threshold. The ability to quantify AA in aerosol samples without derivatization reduces time-consuming preparation procedures while providing the advancement of selective mass determination for important organic nitrogen (ON) species. Details on sample preparation that eliminates the freeze-drying approach typically practiced for water removal with biological samples, and vapor phase microwave hydrolysis parameters are provided. Method application for determination of atmospheric ON is discussed.


Subject(s)
Aerosols/analysis , Air/analysis , Amino Acids/analysis , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods
7.
J Air Waste Manag Assoc ; 61(3): 319-23, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21416759

ABSTRACT

To conduct low oxides of nitrogen (NOx) chamber experiments with modern diesel emissions (DE), a high-capacity NO, denuder was developed and used at the European Photoreactor (EUPHORE) outdoor simulation chamber. The denuder displayed a sufficient NOx storage capacity for use with DE, and efficient removal of NO, during injections of DE was achieved (>98%). Degradation of the denuder performance after repeated regeneration by heating (400 degrees C) and flushing with an air/oxygen ratio of 2:1 was not observed for a total of nine experiments. Evaluation of dark (with chamber cover closed) experiments (four in total) with and without the denuder in-line revealed some reduction (22%) of diesel particulate matter (DPM) with use of the denuder, most likely a result of impaction or settling of DPM during DE transit. However, DPM reduction may have also been a result of reductions in effective load of the engine-dyno system during the DE injections. Extensive chemical characterization of DPM revealed no significant perturbation of major compound groups associated with denuder use, except for nitrated polyaromatic hydrocarbon (NPAH) concentrations. The implications of high-NOx experiments without the use of a NOx denuder are discussed.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Nitrogen Oxides/isolation & purification , Vehicle Emissions/analysis
8.
Res Rep Health Eff Inst ; (147): 5-60, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20572366

ABSTRACT

The hypothesis of this study was that exposing diesel exhaust (DE*) to the atmosphere transforms its composition and toxicity. Our specific aims were (1) to characterize the gas- and particle-phase products of atmospheric transformations of DE under the influence of daylight, ozone (O3), hydroxyl (OH) radicals, and nitrate (NO3) radicals; and (2) to explore the biologic activity of DE before and after the transformations took place. The study was executed with the aid of the EUPHORE (European Photoreactor) outdoor simulation chamber facility in Valencia, Spain. EUPHORE is one of the largest and best-equipped facilities of its kind in the world, allowing investigation of atmospheric transformation processes under realistic ambient conditions (with dilutions in the range of 1:300). DE was generated on-site using a modern light-duty diesel engine and a dynamometer system equipped with a continuous emission-gas analyzer. The engine (a turbocharged, intercooled model with common-rail direct injection) was obtained from the Ford Motor Company. A first series of experiments was carried out in January 2005 (the winter 2005 campaign), a second in May 2005 (the summer 2005 campaign), and a third in May and June 2006 (the summer 2006 campaign). The diesel fuel that was used closely matched the one currently in use in most of the United States (containing 47 ppm sulfur and 15% aromatic compounds). Our experiments examined the effects on the composition of DE aged in the dark with added NO3 radicals and of DE aged in daylight with added OH radicals both with and without added volatile organic compounds (VOCs). In order to remove excess nitrogen oxides (NO(x)), a NO(x) denuder was devised and used to conduct experiments in realistic low-NO(x) conditions in both summer campaigns. A scanning mobility particle sizer was used to determine the particle size and the number and volume concentrations of particulate matter (PM) in the DE. O3, NO(x), and reactive nitrogen oxides (NO(y)) were monitored using chemiluminescence and Fourier transform infrared instruments. At the end of the exposures, samples of particle-associated and semivolatile organic compounds (SVOCs) were collected from the chamber for chemical analysis using an XAD-coated annular denuder followed by a filter and XAD cartridge. (XAD is an adsorbent polystyrene divinylbenzene resin used in sampling cartridges.) Samples for toxicity testing were collected using Teflon filters followed by two XAD cartridges. The chemical analyses included determination of organic carbon (OC), elemental carbon (EC), carbon fractions, inorganic ions (e.g., sulfate and nitrate), and speciated organic compounds (polycyclic aromatic hydrocarbons [PAHs], nitro-PAHs, polar compounds, alkanes, hopanes, and steranes). The toxicity tests were performed with extracts of PM combined with the SVOCs. The biologic activity of these extracts was evaluated in vivo by instilling them into the tracheas of rodents and measuring pulmonary toxicity, inflammation, and oxidative-stress responses. Results from the chemical analyses indicated that aging DE in the dark with added NO3 radicals and aging DE in daylight with and without additions led to the formation of additional particles and SVOC mass caused by reactions of VOCs, SVOCs, and inorganic gases. The greatest increase in mass occurred with the addition of VOCs as co-reactants. The proportions of the pyrolized OC (POC) fraction increased in the organic mass, which suggested that highly polar and oligomeric compounds had been formed. Results from the toxicity testing were consistent with the hypothesis that the toxicity of the samples had been affected by changes in their composition (caused both by the atmospheric aging and by changes in the initial composition of the DE presumably associated with changes in the engine, which was new at the outset and accrued wear during the study).


Subject(s)
Air Pollutants/toxicity , Vehicle Emissions/toxicity , Air Pollutants/analysis , Animals , Atmosphere , Bronchoalveolar Lavage Fluid/chemistry , Inhalation Exposure , Lung/chemistry , Mice , Oxidative Stress , Rats , Toxicity Tests , Vehicle Emissions/analysis
9.
Anal Bioanal Chem ; 386(4): 883-90, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16761124

ABSTRACT

Many nitrated polycyclic aromatic hydrocarbons (NPAH) that are present in low concentrations in the environment and in emission sources have been shown to be mutagenic and/or carcinogenic. This paper reviews the current methods of analysis of these compounds with the emphasis on NPAH measurements in ambient particulate matter samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...