Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 9: 650289, 2021.
Article in English | MEDLINE | ID: mdl-33816455

ABSTRACT

Volumetric muscle loss (VML) injuries after extremity trauma results in an important clinical challenge often associated with impaired healing, significant fibrosis, and long-term pain and functional deficits. While acute muscle injuries typically display a remarkable capacity for regeneration, critically sized VML defects present a dysregulated immune microenvironment which overwhelms innate repair mechanisms leading to chronic inflammation and pro-fibrotic signaling. In this series of studies, we developed an immunomodulatory biomaterial therapy to locally modulate the sphingosine-1-phosphate (S1P) signaling axis and resolve the persistent pro-inflammatory injury niche plaguing a critically sized VML defect. Multiparameter pseudo-temporal 2D projections of single cell cytometry data revealed subtle distinctions in the altered dynamics of specific immune subpopulations infiltrating the defect that were critical to muscle regeneration. We show that S1P receptor modulation via nanofiber delivery of Fingolimod (FTY720) was characterized by increased numbers of pro-regenerative immune subsets and coincided with an enriched pool of muscle stem cells (MuSCs) within the injured tissue. This FTY720-induced priming of the local injury milieu resulted in increased myofiber diameter and alignment across the defect space followed by enhanced revascularization and reinnervation of the injured muscle. These findings indicate that localized modulation of S1P receptor signaling via nanofiber scaffolds, which resemble the native extracellular matrix ablated upon injury, provides great potential as an immunotherapy for bolstering endogenous mechanisms of regeneration following VML injury.

2.
J Biomed Mater Res A ; 109(5): 695-712, 2021 05.
Article in English | MEDLINE | ID: mdl-32608188

ABSTRACT

Regeneration of skeletal muscle after volumetric injury is thought to be impaired by a dysregulated immune microenvironment that hinders endogenous repair mechanisms. Such defects result in fatty infiltration, tissue scarring, chronic inflammation, and debilitating functional deficits. Here, we evaluated the key cellular processes driving dysregulation in the injury niche through localized modulation of sphingosine-1-phosphate (S1P) receptor signaling. We employ dimensionality reduction and pseudotime analysis on single cell cytometry data to reveal heterogeneous immune cell subsets infiltrating preclinical muscle defects due to S1P receptor inhibition. We show that global knockout of S1P receptor 3 (S1PR3) is marked by an increase of muscle stem cells within injured tissue, a reduction in classically activated relative to alternatively activated macrophages, and increased bridging of regenerating myofibers across the defect. We found that local S1PR3 antagonism via nanofiber delivery of VPC01091 replicated key features of pseudotime immune cell recruitment dynamics and enhanced regeneration characteristic of global S1PR3 knockout. Our results indicate that local S1P receptor modulation may provide an effective immunotherapy for promoting a proreparative environment leading to improved regeneration following muscle injury.


Subject(s)
Cyclopentanes/therapeutic use , Immunotherapy/methods , Muscle, Skeletal/injuries , Regeneration/drug effects , Sphingosine-1-Phosphate Receptors/physiology , Animals , Cyclopentanes/pharmacology , Drug Liberation , Flow Cytometry , Leukopenia/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Atomic Force , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myeloid Cells/immunology , Nanofibers , Organ Size , Quadriceps Muscle/immunology , Quadriceps Muscle/injuries , Quadriceps Muscle/metabolism , Quadriceps Muscle/pathology , Signal Transduction/drug effects , Sphingosine-1-Phosphate Receptors/deficiency , Sphingosine-1-Phosphate Receptors/genetics , T-Lymphocyte Subsets/immunology , Tissue Scaffolds
3.
Tissue Eng Part C Methods ; 25(2): 59-70, 2019 02.
Article in English | MEDLINE | ID: mdl-30648479

ABSTRACT

IMPACT STATEMENT: The goal of this study was to determine the threshold for a critically sized, nonhealing muscle defect by characterizing key components in the balance between fibrosis and regeneration as a function of injury size in the mouse quadriceps. There is currently limited understanding of what leads to a critically sized muscle defect and which muscle regenerative components are functionally impaired. With the substantial increase in preclinical VML models as testbeds for tissue engineering therapeutics, defining the critical threshold for VML injuries will be instrumental in characterizing therapeutic efficacy and potential for subsequent translation.


Subject(s)
Muscular Diseases/pathology , Muscular Diseases/therapy , Myofibrils/physiology , Neuromuscular Junction/cytology , Quadriceps Muscle/cytology , Quadriceps Muscle/injuries , Tissue Engineering , Animals , Female , Mice , Mice, Inbred C57BL , Quadriceps Muscle/physiology , Tissue Scaffolds , Wound Healing
4.
Sci Rep ; 7(1): 447, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28348370

ABSTRACT

Successful tissue repair requires the activities of myeloid cells such as monocytes and macrophages that guide the progression of inflammation and healing outcome. Immunoregenerative materials leverage the function of endogenous immune cells to orchestrate complex mechanisms of repair; however, a deeper understanding of innate immune cell function in inflamed tissues and their subsequent interactions with implanted materials is necessary to guide the design of these materials. Blood monocytes exist in two primary subpopulations, characterized as classical inflammatory or non-classical. While classical monocytes extravasate into inflamed tissue and give rise to macrophages or dendritic cells, the recruitment kinetics and functional role of non-classical monocytes remains unclear. Here, we demonstrate that circulating non-classical monocytes are directly recruited to polymer films within skin injuries, where they home to a perivascular niche and generate alternatively activated, wound healing macrophages. Selective labeling of blood monocyte subsets indicates that non-classical monocytes are biased progenitors of alternatively activated macrophages. On-site delivery of the immunomodulatory small molecule FTY720 recruits S1PR3-expressing non-classical monocytes that support vascular remodeling after injury. These results elucidate a previously unknown role for blood-derived non-classical monocytes as contributors to alternatively activated macrophages, highlighting them as key regulators of inflammatory response and regenerative outcome.


Subject(s)
Macrophages/pathology , Monocytes/pathology , Soft Tissue Injuries/pathology , Stem Cells/pathology , Wound Healing , Adoptive Transfer , Animals , Antigens, CD/metabolism , Arterioles/drug effects , Arterioles/metabolism , Biocompatible Materials/pharmacology , Cell Differentiation/drug effects , Fingolimod Hydrochloride/pharmacology , Implants, Experimental , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred C57BL , Models, Biological , Monocytes/drug effects , Monocytes/metabolism , Skin/blood supply , Skin/pathology , Wound Healing/drug effects
5.
Acta Biomater ; 53: 109-122, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28213094

ABSTRACT

Many goals in tissue engineering rely on modulating cellular localization and polarization of cell signaling, including the inhibition of inflammatory infiltrate, facilitation of inflammatory cell egress, and clearance of apoptotic cells. Omega-3 polyunsaturated fatty acid-derived resolvins are gaining increasing recognition for their essential roles in inhibition of neutrophil invasion into inflamed tissue and promotion of macrophage phagocytosis of cellular debris as well as their egress to the lymphatics. Biomaterial-based release of lipid mediators is a largely under-explored approach that provides a method to manipulate local lipid signaling gradients in vivo and direct the recruitment and/or polarization of anti-inflammatory cell subsets to suppress inflammatory signaling and enhance angiogenesis and tissue regeneration. The goal of this study was to encapsulate Aspirin-Triggered Resolvin D1 (AT-RvD1) into a degradable biomaterial in order to elucidate the effects of sustained, localized delivery in a model of sterile inflammation. Flow cytometric and imaging analysis at both 1 and 3days after injury showed that localized AT-RvD1 delivery was able significantly increase the accumulation of anti-inflammatory monocytes and M2 macrophages while limiting the infiltration of neutrophils. Additionally, cytokine profiling and longitudinal vascular analysis revealed a shift towards a pro-angiogenic profile with increased concentrations of VEGF and SDF-1α, and increased arteriolar diameter and tortuosity. These results demonstrate the ability of locally-delivered AT-RvD1 to increase pro-regenerative immune subpopulations and promote vascular remodeling. STATEMENT OF SIGNIFICANCE: This work is motivated by our efforts to explore the underlying mechanisms of inflammation resolution after injury and to develop biomaterial-based approaches to amplify endogenous mechanisms of resolution and repair. Though specific lipid mediators have been identified that actively promote the resolution of inflammation, biomaterial-based localized delivery of these mediators has been largely unexplored. We loaded Aspirin-Triggered Resolvin D1 into a PLGA scaffold and examined the effects of sustained, localized delivery on the innate immune response. We found that biomaterial delivery of resolvin was able to enhance the accumulation of pro-regenerative populations of immune cells, including anti-inflammatory monocytes, population that has never before been shown to respond to resolvin treatment, and also enhance vascular remodeling in response to tissue injury.


Subject(s)
Aspirin/administration & dosage , Docosahexaenoic Acids/administration & dosage , Drug Delivery Systems , Immune System/drug effects , Vascular Remodeling/drug effects , Animals , Biocompatible Materials , Cytokines/metabolism , Immune System/cytology , Inflammation/prevention & control , Lactic Acid , Male , Materials Testing , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/drug effects , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , RAW 264.7 Cells , Regeneration/drug effects , Regeneration/immunology , Tissue Engineering , Vascular Remodeling/immunology
6.
Biomaterials ; 117: 32-43, 2017 02.
Article in English | MEDLINE | ID: mdl-27930948

ABSTRACT

Regeneration of traumatic defects in skeletal muscle requires the synchronized behavior of multiple cells that participate in repair. The inflammatory cascade that is rapidly initiated after injury serves as a powerful node at which to guide the progression of healing and influence tissue repair. Here, we examine the role that myeloid cells play in the healing of traumatic skeletal muscle injury, and leverage their pro-regenerative functions using local delivery of the immunomodulatory small molecule FTY720. We demonstrate that increasing the frequency of non-classical monocytes in inflamed muscle coincides with increased numbers of CD206+ alternatively activated macrophages. Animals treated with immunomodulatory materials had greater defect closure and more vascularization in the acute phases of injury. In the later stages of repair, during which parenchymal tissue growth occurs, we observed improved regeneration of muscle fibers and decreased fibrotic tissue following localization of pro-regenerative inflammation. These results highlight non-classical monocytes as a novel therapeutic target to improve the regenerative outcome after traumatic skeletal muscle injury.


Subject(s)
Monocytes/immunology , Monocytes/pathology , Muscle, Skeletal/immunology , Muscle, Skeletal/pathology , Myositis/immunology , Myositis/pathology , Regeneration/immunology , Animals , Cytokines/immunology , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL