Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Adv ; 10(6): eadk3384, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335290

ABSTRACT

Disruption of cell division cycle associated 7 (CDCA7) has been linked to aberrant DNA hypomethylation, but the impact of DNA methylation loss on transcription has not been investigated. Here, we show that CDCA7 is critical for maintaining global DNA methylation levels across multiple tissues in vivo. A pathogenic Cdca7 missense variant leads to the formation of large, aberrantly hypomethylated domains overlapping with the B genomic compartment but without affecting the deposition of H3K9 trimethylation (H3K9me3). CDCA7-associated aberrant DNA hypomethylation translated to localized, tissue-specific transcriptional dysregulation that affected large gene clusters. In the brain, we identify CDCA7 as a transcriptional repressor and epigenetic regulator of clustered protocadherin isoform choice. Increased protocadherin isoform expression frequency is accompanied by DNA methylation loss, gain of H3K4 trimethylation (H3K4me3), and increased binding of the transcriptional regulator CCCTC-binding factor (CTCF). Overall, our in vivo work identifies a key role for CDCA7 in safeguarding tissue-specific expression of gene clusters via the DNA methylation pathway.


Subject(s)
Cell Cycle Proteins , Nuclear Proteins , DNA , DNA Methylation , Protein Isoforms/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Animals , Mice , Cell Cycle Proteins/metabolism , Nuclear Proteins/metabolism
2.
Sci Rep ; 12(1): 1426, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082321

ABSTRACT

With several therapeutic strategies for facioscapulohumeral muscular dystrophy (FSHD) entering clinical testing, outcome measures are becoming increasingly important. Considering the spatiotemporal nature of FSHD disease activity, clinical trials would benefit from non-invasive imaging-based biomarkers that can predict FSHD-associated transcriptome changes. This study investigated two FSHD-associated transcriptome signatures (DUX4 and PAX7 signatures) in FSHD skeletal muscle biopsies, and tested their correlation with a variety of disease-associated factors, including Ricci clinical severity score, disease duration, D4Z4 repeat size, muscle pathology scorings and functional outcome measures. It establishes that DUX4 and PAX7 signatures both show a sporadic expression pattern in FSHD-affected biopsies, possibly marking different stages of disease. This study analyzed two imaging-based biomarkers-Turbo Inversion Recovery Magnitude (TIRM) hyperintensity and fat fraction-and provides insights into their predictive power as non-invasive biomarkers for FSHD signature detection in clinical trials. Further insights in the heterogeneity of-and correlation between-imaging biomarkers and molecular biomarkers, as provided in this study, will provide important guidance to clinical trial design in FSHD. Finally, this study investigated the role of infiltrating non-muscle cell types in FSHD signature expression and detected potential distinct roles for two fibro-adipogenic progenitor subtypes in FSHD.


Subject(s)
Homeodomain Proteins/genetics , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , PAX7 Transcription Factor/genetics , Transcriptome , Biomarkers/metabolism , Biopsy , Case-Control Studies , Female , Gene Expression Profiling , Gene Expression Regulation , Homeodomain Proteins/metabolism , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/diagnostic imaging , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , PAX7 Transcription Factor/metabolism , Severity of Illness Index , Stem Cells/metabolism , Stem Cells/pathology
3.
Epigenetics Chromatin ; 14(1): 49, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34706774

ABSTRACT

BACKGROUND: Microrchidia proteins (MORCs) are involved in epigenetic gene silencing in a variety of eukaryotic organisms. Deletion of MORCs result in several developmental abnormalities and their dysregulation has been implicated in developmental disease and multiple cancers. Specifically, mammalian MORC3 mutations are associated with immune system defects and human cancers such as bladder, uterine, stomach, lung, and diffuse large B cell lymphomas. While previous studies have shown that MORC3 binds to H3K4me3 in vitro and overlaps with H3K4me3 ChIP-seq peaks in mouse embryonic stem cells, the mechanism by which MORC3 regulates gene expression is unknown. RESULTS: In this study, we identified that mutation in Morc3 results in a suppressor of variegation phenotype in a Modifiers of murine metastable epialleles Dominant (MommeD) screen. We also find that MORC3 functions as an epigenetic silencer of transposable elements (TEs) in mouse embryonic stem cells (mESCs). Loss of Morc3 results in upregulation of TEs, specifically those belonging to the LTR class of retrotransposons also referred to as endogenous retroviruses (ERVs). Using ChIP-seq we found that MORC3, in addition to its known localization at H3K4me3 sites, also binds to ERVs, suggesting a direct role in regulating their expression. Previous studies have shown that these ERVs are marked by the repressive histone mark H3K9me3 which plays a key role in their silencing. However, we found that levels of H3K9me3 showed only minor losses in Morc3 mutant mES cells. Instead, we found that loss of Morc3 resulted in increased chromatin accessibility at ERVs as measured by ATAC-seq. CONCLUSIONS: Our results reveal MORC3 as a novel regulator of ERV silencing in mouse embryonic stem cells. The relatively minor changes of H3K9me3 in the Morc3 mutant suggests that MORC3 acts mainly downstream of, or in a parallel pathway with, the TRIM28/SETDB1 complex that deposits H3K9me3 at these loci. The increased chromatin accessibility of ERVs in the Morc3 mutant suggests that MORC3 may act at the level of chromatin compaction to effect TE silencing.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA Transposable Elements , DNA-Binding Proteins , Endogenous Retroviruses , Mouse Embryonic Stem Cells , Animals , Chromatin , DNA-Binding Proteins/metabolism , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism , Gene Silencing , Mice , Mouse Embryonic Stem Cells/metabolism
4.
J Med Genet ; 56(10): 693-700, 2019 10.
Article in English | MEDLINE | ID: mdl-31243061

ABSTRACT

BACKGROUND: Variants in the Structural Maintenance of Chromosomes flexible Hinge Domain-containing protein 1 (SMCHD1) can cause facioscapulohumeral muscular dystrophy type 2 (FSHD2) and the unrelated Bosma arhinia microphthalmia syndrome (BAMS). In FSHD2, pathogenic variants are found anywhere in SMCHD1 while in BAMS, pathogenic variants are restricted to the extended ATPase domain. Irrespective of the phenotypic outcome, both FSHD2-associated and BAMS-associated SMCHD1 variants result in quantifiable local DNA hypomethylation. We compared FSHD2, BAMS and non-pathogenic SMCHD1 variants to derive genotype-phenotype relationships. METHODS: Examination of SMCHD1 variants and methylation of the SMCHD1-sensitive FSHD locus DUX4 in 187 FSHD2 families, 41 patients with BAMS and in control individuals. Analysis of variants in a three-dimensional model of the ATPase domain of SMCHD1. RESULTS: DUX4 methylation analysis is essential to establish pathogenicity of SMCHD1 variants. Although the FSHD2 mutation spectrum includes all types of variants covering the entire SMCHD1 locus, missense variants are significantly enriched in the extended ATPase domain. Identification of recurrent variants suggests disease-specific residues for FSHD2 and in BAMS, consistent with a largely disease-specific localisation of variants in SMCHD1. CONCLUSIONS: The localisation of missense variants within the ATPase domain of SMCHD1 may contribute to the differences in phenotypic outcome.


Subject(s)
Choanal Atresia/genetics , Chromosomal Proteins, Non-Histone/genetics , Microphthalmos/genetics , Muscular Dystrophy, Facioscapulohumeral/genetics , Nose/abnormalities , Adenosine Triphosphatases/genetics , DNA Methylation , Female , Genetic Variation , Humans , Male , Mutation , Mutation, Missense , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...