Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cancers (Basel) ; 15(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38136389

ABSTRACT

Aggressive-variant prostate cancers (AVPCs) are a subset of metastatic castrate-resistant prostate cancers (mCRPCs) characterized by defects in ≥ two of three of TP53, RB1, and PTEN (AVPCm), a profile linked to lineage plasticity, androgen indifference, and platinum sensitivity. Men with mCRPC undergoing biopsies for progression were assessed for AVPCm using immunohistochemistry (IHC), next-generation sequencing (NGS) of solid tumor DNA (stDNA), and NGS of circulating tumor DNA (ctDNA) assays in CLIA-certified labs. Biopsy characteristics, turnaround times, inter-reader concordance, and inter-assay concordance were assessed. AVPCm was detected in 13 (27%) patients via IHC, two (6%) based on stDNA, and seven (39%) based on ctDNA. The concordance of the IHC reads between pathologists was variable. IHC had a higher detection rate of AVPCm+ tumors with the shortest turnaround times. stDNA had challenges with copy number loss detection, limiting its detection rate. ctDNA detected the greatest proportion of AVPCm+ tumors but had a low tumor content in two thirds of patients. These data show the operational characteristics of AVPCm detection using various assays, and inform trial design using AVPCm as a criterion for patient selection or stratification.

2.
Cancers (Basel) ; 16(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38201434

ABSTRACT

Epidermal growth factor receptor variant III (EGFRvIII, the deletion of exons 2-7) is a recurrent intragenic EGFR::EGFR.E1E8 fusion that occurs in high-grade gliomas. The presence of EGFRvIII in other solid tumors has not been well characterized. We retrospectively reviewed advanced malignant solid tumor cases tested by a custom hybrid capture 610-gene next-generation sequencing platform from 2021 to 2022. EGFRvIII was identified in 17 of 4331 (0.4%) cases, including 16 of 238 (7%) brain tumors and 1/301 (0.3%) breast tumors. EGFRvIII-positive brain tumors were all glioblastoma IDH-wildtype, most with concurrent TERT promoter mutation (14 of 16), EGFR amplification (13 of 16), and EGFR mutation (8 of 16). The only EGFRvIII-positive breast lesion was a sarcomatoid neoplasm in a young female patient. A separate breast case tested outside our institution with reported EGFRvIII was noted in a young female patient with a malignant phyllodes tumor with stromal overgrowth. Microscopically, both EGFRvIII-positive breast tumors showed high-grade sarcomatoid morphology with brisk mitotic activity. In summary, EGFRvIII is rare, occurring primarily in glioblastoma and rarely in breast sarcomatoid neoplasm, with no instances identified in other tumor types in our series. This select group of patients may benefit from chemotherapy and/or targeted anti-EGFR therapy.

3.
Front Oncol ; 11: 769385, 2021.
Article in English | MEDLINE | ID: mdl-34900719

ABSTRACT

Radiation therapy for abdominal tumors is challenging because the small intestine is exquisitely radiosensitive. Unfortunately, there are no FDA-approved therapies to prevent or mitigate GI radiotoxicity. The EGLN protein family are oxygen sensors that regulate cell survival and metabolism through the degradation of hypoxia-inducible factors (HIFs). Our group has previously shown that stabilization of HIF2 through genetic deletion or pharmacologic inhibition of the EGLNs mitigates and protects against GI radiotoxicity in mice by improving intestinal crypt stem cell survival. Here we aimed to elucidate the molecular mechanisms by which HIF2 confers GI radioprotection. We developed duodenal organoids from mice, transiently overexpressed non-degradable HIF2, and performed bulk RNA sequencing. Interestingly, HIF2 upregulated known radiation modulators and genes involved in GI homeostasis, including Wnt5a. Non-canonical Wnt5a signaling has been shown by other groups to improve intestinal crypt regeneration in response to injury. Here we show that HIF2 drives Wnt5a expression in multiple duodenal organoid models. Luciferase reporter assays performed in human cells showed that HIF2 directly activates the WNT5A promoter via a hypoxia response element. We then evaluated crypt regeneration using spheroid formation assays. Duodenal organoids that were pre-treated with recombinant Wnt5a had a higher cryptogenic capacity after irradiation, compared to vehicle-treated organoids. Conversely, we found that Wnt5a knockout decreased the cryptogenic potential of intestinal stem cells following irradiation. Treatment with recombinant Wnt5a prior to irradiation rescued the cryptogenic capacity of Wnt5a knockout organoids, indicating that Wnt5a is necessary and sufficient for duodenal radioprotection. Taken together, our results suggest that HIF2 radioprotects the GI tract by inducing Wnt5a expression.

4.
Genetics ; 217(1): 1-12, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33683368

ABSTRACT

Somatic copy number alterations (SCNAs) serve as hallmarks of tumorigenesis and often result in deviations from one-to-one allelic ratios at heterozygous loci, leading to allelic imbalance (AI). The Cancer Genome Atlas (TCGA) reports SCNAs identified using a circular binary segmentation algorithm, providing segment mean copy number estimates from single-nucleotide polymorphism DNA microarray total intensities (log R ratio), but not allele-specific intensities ("B allele" frequencies) that inform of AI. Our approach provides more sensitive identification of SCNAs by modeling the "B allele" frequencies jointly, thereby bolstering the catalog of chromosomal alterations in this widely utilized resource. Here we present AI summaries for all 33 tumor sites in TCGA, including those induced by SCNAs and copy-neutral loss-of-heterozygosity (cnLOH). We identified AI in 94% of the tumors, higher than in previous reports. Recurrent events included deletions of 17p, 9q, 3p, amplifications of 8q, 1q, 7p, as well as mixed event types on 8p and 13q. We also observed both site-specific and pan-cancer (spanning 17p) cnLOH, patterns which have not been comprehensively characterized. The identification of such cnLOH events elucidates tumor suppressors and multi-hit pathways to carcinogenesis. We also contrast the landscapes inferred from AI- and total intensity-derived SCNAs and propose an automated procedure to improve and adjust SCNAs in TCGA for cases where high levels of aneuploidy obscured baseline intensity identification. Our findings support the exploration of additional methods for robust automated inference procedures and to aid empirical discoveries across TCGA.


Subject(s)
Chromosome Aberrations , DNA Copy Number Variations , Gene Frequency , Neoplasms/genetics , Chromosomes, Human/genetics , Databases, Genetic , Humans , Loss of Heterozygosity , Neoplasms/classification
5.
JCI Insight ; 52019 07 23.
Article in English | MEDLINE | ID: mdl-31335325

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) requires mitochondrial oxidative phosphorylation (OXPHOS) to fuel its growth, however, broadly inhibiting this pathway might also disrupt essential mitochondrial functions in normal tissues. PDAC cells exhibit abnormally fragmented mitochondria that are essential to its oncogenicity, but it was unclear if this mitochondrial feature was a valid therapeutic target. Here, we present evidence that normalizing the fragmented mitochondria of pancreatic cancer via the process of mitochondrial fusion reduces OXPHOS, which correlates with suppressed tumor growth and improved survival in preclinical models. Mitochondrial fusion was achieved by genetic or pharmacologic inhibition of dynamin related protein-1 (Drp1) or through overexpression of mitofusin-2 (Mfn2). Notably, we found that oral leflunomide, an FDA-approved arthritis drug, promoted a two-fold increase in Mfn2 expression in tumors and was repurposed as a chemotherapeutic agent, improving the median survival of mice with spontaneous tumors by 50% compared to vehicle. We found that the chief tumor suppressive mechanism of mitochondrial fusion was enhanced mitophagy, which proportionally reduced mitochondrial mass and ATP production. These data suggest that mitochondrial fusion is a specific and druggable regulator of pancreatic cancer growth that could be rapidly translated to the clinic.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitophagy/genetics , Pancreatic Neoplasms/metabolism , Animals , CRISPR-Cas Systems , Disease Models, Animal , Dynamins/antagonists & inhibitors , Dynamins/genetics , Enzyme Inhibitors/pharmacology , GTP Phosphohydrolases/genetics , Leflunomide/pharmacology , Mice , Mice, Knockout , Mitochondrial Dynamics/drug effects , Mitophagy/drug effects , Oxidative Phosphorylation/drug effects , Quinazolinones/pharmacology , Survival Rate
6.
Am J Respir Crit Care Med ; 200(6): 742-750, 2019 09 15.
Article in English | MEDLINE | ID: mdl-30896962

ABSTRACT

Rationale: Uninvolved normal-appearing airway epithelium has been shown to exhibit specific mutations characteristic of nearby non-small cell lung cancers (NSCLCs). Yet, its somatic mutational landscape in patients with early-stage NSCLC is unknown.Objectives: To comprehensively survey the somatic mutational architecture of the normal airway epithelium in patients with early-stage NSCLC.Methods: Multiregion normal airways, comprising tumor-adjacent small airways, tumor-distant large airways, nasal epithelium and uninvolved normal lung (collectively airway field), matched NSCLCs, and blood cells (n = 498) from 48 patients were interrogated for somatic single-nucleotide variants by deep-targeted DNA sequencing and for chromosomal allelic imbalance events by genome-wide genotype array profiling. Spatiotemporal relationships between the airway field and NSCLCs were assessed by phylogenetic analysis.Measurements and Main Results: Genomic airway field carcinogenesis was observed in 25 cases (52%). The airway field epithelium exhibited a total of 269 somatic mutations in most patients (n = 36) including key drivers that were shared with the NSCLCs. Allele frequencies of these acquired variants were overall higher in NSCLCs. Integrative analysis of single-nucleotide variants and allelic imbalance events revealed driver genes with shared "two-hit" alterations in the airway field (e.g., TP53, KRAS, KEAP1, STK11, and CDKN2A) and those with single hits progressing to two in the NSCLCs (e.g., PIK3CA and NOTCH1).Conclusions: Tumor-adjacent and tumor-distant normal-appearing airway epithelia exhibit somatic driver alterations that undergo selection-driven clonal expansion in NSCLC. These events offer spatiotemporal insights into the development of NSCLC and, thus, potential targets for early treatment.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Transformation, Neoplastic/genetics , Epithelium/growth & development , Genes, Tumor Suppressor , Lung Neoplasms/genetics , Mutation , Adenocarcinoma/physiopathology , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/physiopathology , Female , Humans , Lung Neoplasms/physiopathology , Male , Middle Aged , Sequence Analysis, DNA
7.
EBioMedicine ; 42: 296-303, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30905849

ABSTRACT

BACKGROUND: Genomic investigation of atypical adenomatous hyperplasia (AAH), the only known precursor lesion to lung adenocarcinomas (LUAD), presents challenges due to the low mutant cell fractions. This necessitates sensitive methods for detection of chromosomal aberrations to better study the role of critical alterations in early lung cancer pathogenesis and the progression from AAH to LUAD. METHODS: We applied a sensitive haplotype-based statistical technique to detect chromosomal alterations leading to allelic imbalance (AI) from genotype array profiling of 48 matched normal lung parenchyma, AAH and tumor tissues from 16 stage-I LUAD patients. To gain insights into shared developmental trajectories among tissues, we performed phylogenetic analyses and integrated our results with point mutation data, highlighting significantly-mutated driver genes in LUAD pathogenesis. FINDINGS: AI was detected in nine AAHs (56%). Six cases exhibited recurrent loss of 17p. AI and the enrichment of 17p events were predominantly identified in patients with smoking history. Among the nine AAH tissues with detected AI, seven exhibited evidence for shared chromosomal aberrations with matched LUAD specimens, including losses harboring tumor suppressors on 17p, 8p, 9p, 9q, 19p, and gains encompassing oncogenes on 8q, 12p and 1q. INTERPRETATION: Chromosomal aberrations, particularly 17p loss, appear to play critical roles early in AAH pathogenesis. Genomic instability in AAH, as well as truncal chromosomal aberrations shared with LUAD, provide evidence for mutation accumulation and are suggestive of a cancerized field contributing to the clonal selection and expansion of these premalignant lesions. FUND: Supported in part by Cancer Prevention and Research Institute of Texas (CPRIT) grant RP150079 (PS and HK), NIH grant R01HG005859 (PS) and The University of Texas MD Anderson Cancer Center Core Support Grant.


Subject(s)
Cell Transformation, Neoplastic/genetics , Lung/metabolism , Lung/pathology , Precancerous Conditions/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Alleles , Allelic Imbalance , Chromosomal Instability , Disease Progression , Female , Genetic Heterogeneity , Genome-Wide Association Study , Haplotypes , Humans , Hyperplasia , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Models, Statistical , Mutation , Neoplasm Staging , Phylogeny , Polymorphism, Single Nucleotide , Young Adult
8.
Clin Cancer Res ; 25(7): 2194-2205, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30385653

ABSTRACT

PURPOSE: Early detection of pancreatic ductal adenocarcinoma (PDAC) remains elusive. Precursor lesions of PDAC, specifically intraductal papillary mucinous neoplasms (IPMNs), represent a bona fide pathway to invasive neoplasia, although the molecular correlates of progression remain to be fully elucidated. Single-cell transcriptomics provides a unique avenue for dissecting both the epithelial and microenvironmental heterogeneities that accompany multistep progression from noninvasive IPMNs to PDAC. EXPERIMENTAL DESIGN: Single-cell RNA sequencing was performed through droplet-based sequencing on 5,403 cells from 2 low-grade IPMNs (LGD-IPMNs), 2 high-grade IPMNs (HGD-IPMN), and 2 PDACs (all surgically resected). RESULTS: Analysis of single-cell transcriptomes revealed heterogeneous alterations within the epithelium and the tumor microenvironment during the progression of noninvasive dysplasia to invasive cancer. Although HGD-IPMNs expressed many core signaling pathways described in PDAC, LGD-IPMNs harbored subsets of single cells with a transcriptomic profile that overlapped with invasive cancer. Notably, a proinflammatory immune component was readily seen in low-grade IPMNs, composed of cytotoxic T cells, activated T-helper cells, and dendritic cells, which was progressively depleted during neoplastic progression, accompanied by infiltration of myeloid-derived suppressor cells. Finally, stromal myofibroblast populations were heterogeneous and acquired a previously described tumor-promoting and immune-evading phenotype during invasive carcinogenesis. CONCLUSIONS: This study demonstrates the ability to perform high-resolution profiling of the transcriptomic changes that occur during multistep progression of cystic PDAC precursors to cancer. Notably, single-cell analysis provides an unparalleled insight into both the epithelial and microenvironmental heterogeneities that accompany early cancer pathogenesis and might be a useful substrate to identify targets for cancer interception.See related commentary by Hernandez-Barco et al., p. 2027.


Subject(s)
Adenocarcinoma, Mucinous/genetics , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Disease Progression , Humans , Phenotype , Tumor Microenvironment
9.
Bioinformatics ; 35(13): 2300-2302, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30462146

ABSTRACT

MOTIVATION: Genetic analysis of cancer regularly includes two or more samples from the same patient. Somatic copy number alterations leading to allelic imbalance (AI) play a critical role in cancer initiation and progression. Directional analysis and visualization of the alleles in imbalance in multi-sample settings allow for inference of recurrent mutations, providing insights into mutation rates, clonality and the genomic architecture and etiology of cancer. RESULTS: The REpeat Chromosomal changes Uncovered by Reflection (RECUR) is an R application for the comparative analysis of AI profiles derived from SNP array and next-generation sequencing data. The algorithm accepts genotype calls and 'B allele' frequencies (BAFs) from at least two samples derived from the same individual. For a predefined set of genomic regions with AI, RECUR compares BAF values among samples. In the presence of AI, the expected value of a BAF can shift in two possible directions, reflecting an increased or decreased abundance of the maternal haplotype, relative to the paternal. The phenomenon of opposite haplotype shifts, or 'mirrored subclonal allelic imbalance', is a form of heterogeneity, and has been linked to clinico-pathological features of cancer. RECUR detects such genomic segments of opposite haplotypes in imbalance and plots BAF values for all samples, using a two-color scheme for intuitive visualization. AVAILABILITY AND IMPLEMENTATION: RECUR is available as an R application. Source code and documentation are available at scheet.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Allelic Imbalance , Alleles , DNA Copy Number Variations , Haplotypes , Humans , Polymorphism, Single Nucleotide
10.
Gastroenterology ; 156(1): 108-118.e4, 2019 01.
Article in English | MEDLINE | ID: mdl-30240661

ABSTRACT

BACKGROUND & AIMS: We aimed to investigate the clinical utility of circulating tumor cell DNA (ctDNA) and exosome DNA (exoDNA) in pancreatic cancer. METHODS: We collected liquid biopsy samples from 194 patients undergoing treatment for localized or metastatic pancreatic adenocarcinoma from April 7, 2015, through October 13, 2017 (425 blood samples collected before [baseline] and during therapy). Additional liquid biopsy samples were collected from 37 disease control individuals. Droplet digital polymerase chain reaction was used to determine KRAS mutant allele fraction (MAF) from ctDNA and exoDNA purified from plasma. For the longitudinal analysis, we analyzed exoDNA and ctDNA in 123 serial blood samples from 34 patients. We performed analysis including Cox regression, Fisher exact test, and Bayesian inference to associate KRAS MAFs in exoDNA and ctDNA with prognostic and predictive outcomes. RESULTS: In the 34 patients with potentially resectable tumors, an increase in exoDNA level after neoadjuvant therapy was significantly associated with disease progression (P = .003), whereas ctDNA did not show correlations with outcomes. Concordance rates of KRAS mutations present in surgically resected tissue and detected in liquid biopsy samples were greater than 95%. On univariate analysis, patients with metastases and detectable ctDNA at baseline status had significantly shorter times of progression-free survival (PFS) (hazard ratio [HR] for death, 1.8; 95% CI, 1.1-3.0; P = .019), and overall survival (OS) (HR, 2.8; 95% CI, 1.4-5.7; P = .0045) compared with patients without detectable ctDNA. On multivariate analysis, MAFs ≥5% in exoDNA were a significant predictor of PFS (HR, 2.28; 95% CI, 1.18-4.40; P = .014) and OS (HR, 3.46; 95% CI, 1.40-8.50; P = .007). A multianalyte approach showed detection of both ctDNA and exoDNA MAFs ≥5% at baseline status to be a significant predictor of OS (HR, 7.73, 95% CI, 2.61-22.91, P = .00002) on multivariate analysis. In the longitudinal analysis, an MAF peak above 1% in exoDNA was significantly associated with radiologic progression (P = .0003). CONCLUSIONS: In a prospective cohort of pancreatic cancer patients, we show how longitudinal monitoring using liquid biopsy samples through exoDNA and ctDNA provides both predictive and prognostic information relevant to therapeutic stratification.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Exosomes/genetics , Mutation , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma/blood , Adenocarcinoma/secondary , Adenocarcinoma/therapy , Biomarkers, Tumor/blood , Circulating Tumor DNA/blood , DNA Mutational Analysis , Disease Progression , Exosomes/pathology , Humans , Liquid Biopsy , Neoadjuvant Therapy , Pancreatectomy , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Polymerase Chain Reaction , Predictive Value of Tests , Prospective Studies , Proto-Oncogene Proteins p21(ras)/blood , Risk Factors , Time Factors , Treatment Outcome
11.
Clin Cancer Res ; 25(2): 641-651, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30352910

ABSTRACT

PURPOSE: Little is known about the genetic alterations characteristic of small bowel adenocarcinoma (SBA). Our purpose was to identify targetable alterations and develop experimental models of this disease.Experimental Design: Whole-exome sequencing (WES) was completed on 17 SBA patient samples and targeted-exome sequencing (TES) on 27 samples to confirm relevant driver mutations. Two SBA models with ERBB2 kinase activating mutations were tested for sensitivity to anti-ERBB2 agents in vivo and in vitro. Biochemical changes were measured by reverse-phase protein arrays. RESULTS: WES identified somatic mutations in 4 canonical pathways (WNT, ERBB2, STAT3, and chromatin remodeling), which were validated in the TES cohort. Although APC mutations were present in only 23% of samples, additional WNT-related alterations were seen in 12%. ERBB2 mutations and amplifications were present in 23% of samples. Patients with alterations in the ERBB2 signaling cascade (64%) demonstrated worse clinical outcomes (median survival 70.3 months vs. 109 months; log-rank HR = 2.4, P = 0.03). Two ERBB2-mutated (V842I and Y803H) cell lines were generated from SBA patient samples. Both demonstrated high sensitivity to ERBB2 inhibitor dacomitinib (IC50 < 2.5 nmol/L). In xenografts derived from these samples, treatment with dacomitinib reduced tumor growth by 39% and 59%, respectively, whereas it had no effect in an SBA wild-type ERBB2 model. CONCLUSIONS: The in vitro and in vivo models of SBA developed here provide a valuable resource for understanding targetable mutations in this disease. Our findings support clinical efforts to target activating ERBB2 mutations in patients with SBA that harbor these alterations.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Intestinal Neoplasms/genetics , Intestinal Neoplasms/metabolism , Mutation , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Signal Transduction , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Animals , Biomarkers, Tumor , Cell Line, Tumor , DNA Copy Number Variations , Disease Models, Animal , Female , Humans , Immunohistochemistry , Intestinal Neoplasms/mortality , Intestinal Neoplasms/pathology , Intestine, Small/pathology , Male , Mice , Protein Binding , Protein Interaction Domains and Motifs , Receptor, ErbB-2/chemistry , Exome Sequencing
12.
BMC Syst Biol ; 12(Suppl 8): 131, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30577783

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) represents a critical health problem of which timely diagnosis and treatment remain challenging. TBI is a result of an external force damaging brain tissue, accompanied by delayed pathogenic events which aggravate the injury. Molecular responses to different mild TBI subtypes have not been well characterized. TBI subtype classification is an important step towards the development and application of novel treatments. The computational systems biology approach is proved to be a promising tool in biomarker discovery for central nervous system injury. RESULTS: In this study, we have performed a network-based analysis on gene expression profiles to identify functional gene subnetworks. The gene expression profiles were obtained from two experimental models of injury in rats: the controlled cortical impact and the fluid percussion injury. Our method integrates protein interaction information with gene expression profiles to identify subnetworks of genes as biomarkers. We have demonstrated that the selected gene subnetworks are more accurate to classify the heterogeneous responses to different injury models, compared to conventional analysis using individual marker genes selected without network information. CONCLUSIONS: The systems approach can lead to a better understanding of the underlying complexities of the molecular responses after TBI and the identified subnetworks will have important prognostic functions for patients who sustain mild TBIs.


Subject(s)
Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Systems Biology/methods , Animals , Biomarkers/metabolism , Male , Rats , Rats, Sprague-Dawley , Transcriptome
13.
Gynecol Oncol ; 151(2): 243-249, 2018 11.
Article in English | MEDLINE | ID: mdl-30194005

ABSTRACT

OBJECTIVE: Uterine carcinosarcoma (UCS) is a rare and aggressive form of uterine cancer. It is bi-phasic, exhibiting histological features of both malignant epithelial (carcinoma) and mesenchymal (sarcoma) elements, reflected in ambiguity in accepted treatment guidelines. We sought to study the genomic and transcriptomic profiles of these elements individually to gain further insights into the development of these tumors. METHODS: We macro-dissected carcinomatous, sarcomatous, and normal tissues from formalin fixed paraffin embedded uterine samples of 10 UCS patients. Single nucleotide polymorphism microarrays, targeted DNA sequencing and whole-transcriptome RNA-sequencing were performed. Somatic chromosomal alterations (SCAs), point mutation and gene expression profiles were compared between carcinomatous and sarcomatous components. RESULTS: In addition to TP53, other recurrently mutated genes harboring putative driver or loss-of-function mutations included PTEN, FBXW7, FGFR2, KRAS, PIK3CA and CTNNB1, genes known to be involved in UCS. Intra-patient somatic mutation and SCA profiles were highly similar between paired carcinoma and sarcoma samples. An epithelial-mesenchymal transition (EMT) signature tended to differentiate components, with EMT-like status more common in advanced-stage patients exhibiting higher inter-component SCA heterogeneity. CONCLUSIONS: From DNA analysis, our results indicate a monoclonal disease origin for this cohort. Yet expression-derived EMT statuses of the carcinomatous and sarcomatous components were often discrepant, and advanced cases displayed greater genomic heterogeneity. Therefore, separately-profiled components of UCS tumors may better inform disease progression or potential.


Subject(s)
Carcinosarcoma/pathology , Uterine Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Carcinosarcoma/genetics , Epithelial-Mesenchymal Transition , Female , Humans , Middle Aged , Mutation , Uterine Neoplasms/genetics
14.
JAMA Oncol ; 4(8): 1085-1092, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29710228

ABSTRACT

Importance: Colorectal carcinomas in patients with Lynch syndrome (LS) arise in a background of mismatch repair (MMR) deficiency, display a unique immune profile with upregulation of immune checkpoints, and response to immunotherapy. However, there is still a gap in understanding the pathogenesis of MMR-deficient colorectal premalignant lesions, which is essential for the development of novel preventive strategies for LS. Objective: To characterize the immune profile of premalignant lesions from a cohort of patients with LS. Design, Setting, and Participants: Whole-genome transcriptomic analysis using next-generation sequencing was performed in colorectal polyps and carcinomas of patients with LS. As comparator and model of MMR-proficient colorectal carcinogenesis, we used samples from patients with familial adenomatous polyposis (FAP). In addition, a total of 47 colorectal carcinomas (6 hypermutants and 41 nonhypermutants) were obtained from The Cancer Genome Atlas (TCGA) for comparisons. Samples were obtained from the University of Texas MD Anderson Cancer Center and "Regina Elena" National Cancer Institute, Rome, Italy. All diagnoses were confirmed by genetic testing. Polyps were collected at the time of endoscopic surveillance and tumors were collected at the time of surgical resection. The data were analyzed from October 2016 to November 2017. Main Outcomes and Measures: Assessment of the immune profile, mutational signature, mutational and neoantigen rate, and pathway enrichment analysis of neoantigens in LS premalignant lesions and their comparison with FAP premalignant lesions, LS carcinoma, and sporadic colorectal cancers from TCGA. Results: The analysis was performed in a total of 28 polyps (26 tubular adenomas and 2 hyperplastic polyps) and 3 early-stage LS colorectal tumors from 24 patients (15 [62%] female; mean [SD] age, 48.12 [15.38] years) diagnosed with FAP (n = 10) and LS (n = 14). Overall, LS polyps presented with low mutational and neoantigen rates but displayed a striking immune activation profile characterized by CD4 T cells, proinflammatory (tumor necrosis factor, interleukin 12) and checkpoint molecules (LAG3 [lymphocyte activation gene 3] and PD-L1 [programmed cell death 1 ligand 1]). This immune profile was independent of mutational rate, neoantigen formation, and MMR status. In addition, we identified a small subset of LS polyps with high mutational and neoantigen rates that were comparable to hypermutant tumors and displayed additional checkpoint (CTLA4 [cytotoxic T-lymphocyte-associated protein 4]) and neoantigens involved in DNA damage response (ATM and BRCA1 signaling). Conclusions and Relevance: These findings challenge the canonical model, based on the observations made in carcinomas, that emphasizes a dependency of immune activation on the acquisition of high levels of mutations and neoantigens, thus opening the door to the implementation of immune checkpoint inhibitors and vaccines for cancer prevention in LS.


Subject(s)
Adenoma/diagnosis , Biomarkers/analysis , Colonic Polyps/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms/diagnosis , Gene Expression Profiling , Precancerous Conditions/diagnosis , Adenoma/genetics , Adenoma/immunology , Colonic Polyps/genetics , Colonic Polyps/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/immunology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Precancerous Conditions/genetics , Precancerous Conditions/immunology , Prognosis
15.
BMC Bioinformatics ; 19(1): 5, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29301485

ABSTRACT

BACKGROUND: 'Next-generation' (NGS) sequencing has wide application in medical genetics, including the detection of somatic variation in cancer. The Ion Torrent-based (IONT) platform is among NGS technologies employed in clinical, research and diagnostic settings. However, identifying mutations from IONT deep sequencing with high confidence has remained a challenge. We compared various computational variant-calling methods to derive a variant identification pipeline that may improve the molecular diagnostic and research utility of IONT. RESULTS: Using IONT, we surveyed variants from the 409-gene Comprehensive Cancer Panel in whole-section tumors, intra-tumoral biopsies and matched normal samples obtained from frozen tissues and blood from four early-stage non-small cell lung cancer (NSCLC) patients. We used MuTect, Varscan2, IONT's proprietary Ion Reporter, and a simple subtraction we called "Poor Man's Caller." Together these produced calls at 637 loci across all samples. Visual validation of 434 called variants was performed, and performance of the methods assessed individually and in combination. Of the subset of inspected putative variant calls (n=223) in genomic regions that were not intronic or intergenic, 68 variants (30%) were deemed valid after visual inspection. Among the individual methods, the Ion Reporter method offered perhaps the most reasonable tradeoffs. Ion Reporter captured 83% of all discovered variants; 50% of its variants were visually validated. Aggregating results from multiple packages offered varied improvements in performance. CONCLUSIONS: Overall, Ion Reporter offered the most attractive performance among the individual callers. This study suggests combined strategies to maximize sensitivity and positive predictive value in variant calling using IONT deep sequencing.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Sequence Analysis, DNA , Software
17.
Clin Cancer Res ; 23(19): 5936-5947, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28645942

ABSTRACT

Purpose: The majority of genomic alterations causing intratumoral heterogeneity (ITH) in colorectal cancer are thought to arise during early stages of carcinogenesis as a burst but only after truncal mutations in APC have expanded a single founder clone. We have investigated if the initial source of ITH is consequent to multiple independent lineages derived from different crypts harboring distinct truncal APC and driver KRAS mutations, thus challenging the prevailing monoclonal monocryptal model.Experimental Design: High-depth next-generation sequencing and SNP arrays were performed in whole-lesion extracts of 37 familial adenomatous polyposis colorectal adenomas. Also, ultrasensitive genotyping of hotspot mutations of APC and KRAS was performed using nanofluidic PCRs in matched bulk biopsies (n = 59) and crypts (n = 591) from 18 adenomas and seven carcinomas and adjacent normal tissues.Results: Multiple co-occurring truncal APC and driver KRAS alterations were uncovered in whole-lesion extracts from adenomas and subsequently confirmed to belong to multiple clones. Ultrasensitive genotyping of bulk biopsies and crypts revealed novel undetected APC mutations that were prominent among carcinomas, whereas abundant wild-type APC crypts were detected in adenomas. KRAS mutational heterogeneity within crypts was evident in both adenomas and carcinomas with a higher degree of concordance between biopsy and crypt genotyping in carcinomas. Nonrandom heterogeneity among crypts was also observed.Conclusions: The striking degree of nonrandom intercrypt heterogeneity in truncal and driver gene mutations observed in adenomas and carcinomas is consistent with a polycryptal model derived from multiple independent initiation linages as the source of early ITH in colorectal carcinogenesis. Clin Cancer Res; 23(19); 5936-47. ©2017 AACR.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Carcinogenesis/genetics , Clonal Evolution/genetics , Colorectal Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Biopsy , Carcinoma , Colorectal Neoplasms/pathology , Female , Genetic Heterogeneity , Genotype , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation
18.
Bioinformatics ; 32(19): 3015-7, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27288500

ABSTRACT

MOTIVATION: The detection of subtle genomic allelic imbalance events has many potential applications. For example, identifying cancer-associated allelic imbalanced regions in low tumor-cellularity samples or in low-proportion tumor subclones can be used for early cancer detection, prognostic assessment and therapeutic selection in cancer patients. We developed hapLOHseq for the detection of subtle allelic imbalance events from next-generation sequencing data. RESULTS: Our method identified events of 10 megabases or greater occurring in as little as 16% of the sample in exome sequencing data (at 80×) and 4% in whole genome sequencing data (at 30×), far exceeding the capabilities of existing software. We also found hapLOHseq to be superior at detecting large chromosomal changes across a series of pancreatic samples from TCGA. AVAILABILITY AND IMPLEMENTATION: hapLOHseq is available at scheet.org/software, distributed under an open source MIT license. CONTACT: pscheet@alum.wustl.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Allelic Imbalance , Exome , High-Throughput Nucleotide Sequencing , Software , Genomics , Humans
19.
Cancer Prev Res (Phila) ; 9(6): 417-27, 2016 06.
Article in English | MEDLINE | ID: mdl-27221540

ABSTRACT

The molecular basis of the adenoma-to-carcinoma transition has been deduced using comparative analysis of genetic alterations observed through the sequential steps of intestinal carcinogenesis. However, comprehensive genomic analyses of adenomas and at-risk mucosa are still lacking. Therefore, our aim was to characterize the genomic landscape of colonic at-risk mucosa and adenomas. We analyzed the mutation profile and copy number changes of 25 adenomas and adjacent mucosa from 12 familial adenomatous polyposis patients using whole-exome sequencing and validated allelic imbalances (AI) in 37 adenomas using SNP arrays. We assessed for evidence of clonality and performed estimations on the proportions of driver and passenger mutations using a systems biology approach. Adenomas had lower mutational rates than did colorectal cancers and showed recurrent alterations in known cancer driver genes (APC, KRAS, FBXW7, TCF7L2) and AIs in chromosomes 5, 7, and 13. Moreover, 80% of adenomas had somatic alterations in WNT pathway genes. Adenomas displayed evidence of multiclonality similar to stage I carcinomas. Strong correlations between mutational rate and patient age were observed in at-risk mucosa and adenomas. Our data indicate that at least 23% of somatic mutations are present in at-risk mucosa prior to adenoma initiation. The genomic profiles of at-risk mucosa and adenomas illustrate the evolution from normal tissue to carcinoma via greater resolution of molecular changes at the inflection point of premalignant lesions. Furthermore, substantial genomic variation exists in at-risk mucosa before adenoma formation, and deregulation of the WNT pathway is required to foster carcinogenesis. Cancer Prev Res; 9(6); 417-27. ©2016 AACR.


Subject(s)
Adenoma/genetics , Adenoma/pathology , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Intestinal Mucosa/pathology , Adult , DNA Mutational Analysis , Female , Humans , Male , Wnt Signaling Pathway/genetics
20.
Elife ; 5: e10250, 2016 Feb 27.
Article in English | MEDLINE | ID: mdl-26920219

ABSTRACT

Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.


Subject(s)
Exosomes , Fibroblasts/metabolism , Glucose/metabolism , Neoplasms/physiopathology , Tumor Microenvironment , Exosomes/metabolism , Fermentation , Glycolysis , Lactic Acid/metabolism , Oxidative Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...