Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38859722

ABSTRACT

Prussian blue and Prussian blue analogues have attracted increasing attention as versatile framework materials with a wide range of applications in catalysis, energy conversion and storage, and biomedical and environmental fields. In terms of energy storage and conversion, Prussian blue-based materials have emerged as suitable candidates of growing interest for the fabrication of batteries and supercapacitors. Their outstanding electrochemical features such as fast charge-discharge rates, high capacity and prolonged cycling life make them favorable for energy storage application. Furthermore, Prussian blue and its analogues as rechargeable battery anodes can advance significantly by the precise control of their structure, morphology, and composition at the nanoscale. Their tunable structural and electronic properties enable the detection of many types of analytes with high sensitivity and specificity, and thus, they are ideal materials for the development of sensors for environmental detection, disease trend monitoring, and industrial safety. Additionally, Prussian blue-based catalysts display excellent photocatalytic performance for the degradation of pollutants and generation of hydrogen. Specifically, their excellent light capturing and charge separation capabilities make them stand out in photocatalytic processes, providing a sustainable option for environmental remediation and renewable energy production. Besides, Prussian blue coatings have been studied particularly for corrosion protection, forming stable and protective layers on metal surfaces, which extend the lifespan of infrastructural materials in harsh environments. Prussian blue and its analogues are highly valuable materials in healthcare fields such as imaging, drug delivery and theranostics because they are biocompatible and their further functionalization is possible. Overall, this review demonstrates that Prussian blue and related framework materials are versatile and capable of addressing many technical challenges in various fields ranging from power generation to healthcare and environmental management.

2.
ACS Appl Bio Mater ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729923

ABSTRACT

Silver nanoparticles (AgNPs) are a potent antibacterial agent, especially when used to treat bacteria that are multidrug resistant. However, it is challenging to eliminate the hazardous reducing agents that remain in AgNPs produced by the conventional chemical reduction process. To overcome these challenges, the presented research demonstrates the fabrication of AgNPs using iota-carrageenan (ι-carra) as a carbohydrate polymer using electron beam (EB) irradiation. Well-characterized ι-carra@AgNPs have a face-centered cubic (FCC) structure with spherical morphology and an average size of 26 nm. Herein we explored the approach for fabricating ι-carra@AgNPs that is suitable for scaling up the production of nanoparticles that exhibit excellent water stability. Further, the optimized ι-carra@AgNPs exhibited considerable antibacterial activity of 40% and 30% inhibition when tested with Gram-negative Escherichia coli ATCC 43895 and Gram-positive Staphylococcus aureus (S. aureus) (ATCC 6538), respectively, and low cytotoxicity at 10-50 µg/mL. To establish the potential biomedical application, as proof of the concept, the ι-carra@AgNPs showed significant antibiofilm activity at 20 µg/mL and also showed 95% wound healing abilities at 50 µg/mL compared to the nontreated control groups. Electron beam assisted ι-carra@AgNPs showed significant beneficial effects against specific bacterial strains and may provide a guide for the development of new antibacterial materials for wound dressing for large-scale production for biomedical applications.

3.
Molecules ; 29(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542889

ABSTRACT

This study describes a simple, cost-effective, and eco-friendly method for synthesizing silver nanoparticles using a rosmarinic acid extract from Perilla frutescens (PFRAE) as the bioreduction agent. The resulting nanoparticles, called PFRAE-AgNPs, were characterized using various analytical techniques. The UV-Vis spectrum confirmed the formation of PFRAE-AgNPs, and the FTIR spectrum indicated the participation of rosmarinic acid in their synthesis and stabilization. The XRD pattern revealed the crystal structure of PFRAE-AgNPs, and the TEM analysis showed their spherical morphology with sizes ranging between 20 and 80 nm. The DLS analysis indicated that PFRAE-AgNPs were monodispersed with an average diameter of 44.0 ± 3.2 nm, and the high negative zeta potential (-19.65 mV) indicated their high stability. In the antibacterial assays, the PFRAE-AgNPs showed potent activity against both Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial pathogens, suggesting that they could be used as a potential antibacterial agent in the clinical setting. Moreover, the antioxidant activity of PFRAE-AgNPs against DPPH and ABTS radical scavengers highlights their potential in the treatment of various oxidative stress-related diseases. PFRAE-AgNPs also demonstrated significant anticancer activity against a range of cell lines including human colon cancer (COLO205), human prostate carcinoma (PC-3), human lung adenocarcinoma (A549), and human ovarian cancer (SKOV3) cell lines suggesting their potential in cancer therapy. The nanoparticles may also have potential in drug delivery, as their small size and high stability could enable them to cross biological barriers and deliver drugs to specific target sites. In addition to the aforementioned properties, PFRAE-AgNPs were found to be biocompatible towards normal (CHO) cells, which is a crucial characteristic for their application in cancer therapy and drug delivery systems. Their antibacterial, antioxidant, and anticancer properties make them promising candidates for the development of new therapeutic agents. Furthermore, their small size, high stability, and biocompatibility could enable them to be used in drug delivery systems to enhance drug efficacy and reduce side effects.


Subject(s)
Metal Nanoparticles , Neoplasms , Perilla frutescens , Humans , Antioxidants/pharmacology , Silver/pharmacology , Silver/chemistry , Rosmarinic Acid , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
Food Chem Toxicol ; 184: 114420, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151072

ABSTRACT

In the present study, we have evaluated the effects of copper (Cu) nanoparticles (NPs) on the primary B-and T-lymphocytes proliferation, cytokine levels, and bio-distribution through in vitro, in vivo and ex-vivo studies to allow the possible exploitations of CuNPs in biomedical applications. CuNPs were characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). The proliferative response of lymphocytes was studied by 3H-thymidine incorporation assay and lymphocyte viability through trypan blue assay. The bio-distribution of CuNPs into lymphoid organs was examined by using ex-vivo imaging system. Cytokine levels in plasma of control and CuNPs treated animal groups were determined by enzyme-linked immunosorbent assay (ELISA) method along with other biochemical analysis. CuNPs significantly suppressed the proliferation of primary splenic and thymic lymphocytes in a dose dependent manner. Ex-vivo imaging exhibited the distribution of CuNPs in spleen and thymus. Oral administration of CuNPs (2 mg and 10 mg/kg body weight) significantly inhibited the proliferation of splenic and thymic lymphocytes along with lowered cytokines levels (TNF-alpha and IL-2) on comparison with controls. The results indicated the significant inhibition of lymphocytes proliferative response and secretion of cytokines, thus unveiling the immunomodulatory effects of CuNPs.


Subject(s)
Metal Nanoparticles , Nanoparticles , Rats , Animals , Copper/pharmacology , Copper/chemistry , Mitogens , Spleen , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Lymphocytes , Cytokines
5.
Sci Rep ; 13(1): 18838, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914791

ABSTRACT

The green methodologies of nanoparticles with plant extracts have received an increase of interest. Copper oxide nanoparticles (CuO NPs) have been utilized in a many of applications in the last few decades. The current study presents the synthesis of CuO NPs with aqueous extract of Morinda citrifolia as a stabilizing agent. The leaf extract of Morinda citrifolia was mixed with a solution of copper sulphate (CuSO4·5H2O) and sodium hydroxide as a catalyst. UV-visible spectroscopy, FTIR, XRD, SEM, TEM, and EDAX analysis were performed to study the synthesized CuO NPs. Particle size distribution of the synthesized CuO NPs have been measured with dynamic light scattering. The CuO NPs synthesized were highly stable, sphere-like, and have size of particles from 20 to 50 nm. Furthermore, as-formed CuO NPs shown strong antibacterial activity against the Gram-positive bacteria (Bacillus subtilis, and Staphylococcus aureus), and Gram-negative bacteria (Escherichia coli). CuO NPs revealed a similar trend was analysed for antifungal activity. The zone of inhibition for the fungi evaluated for Aspergillus flavus (13.0 ± 1.1), Aspergillus niger (14.3 ± 0.7), and Penicillium frequentans (16.8 ± 1.4). According to the results of this investigation, green synthesized CuO NPs with Morinda citrifolia leaf extract may be used in biomedicine as a replacement agent for biological applications.


Subject(s)
Metal Nanoparticles , Morinda , Nanoparticles , Antifungal Agents/pharmacology , Copper/chemistry , Morinda/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Oxides , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared
6.
J Biophotonics ; 16(9): e202300110, 2023 09.
Article in English | MEDLINE | ID: mdl-37261437

ABSTRACT

Therapeutic potential and toxic effects of in vivo administered gold nanoparticles (GNPs) and silver nanoparticles (SNP) depend on distribution in tissues. Rhodamine (Rho) labeled bovine serum albumin (BSA) and chitosan (Chi) were prepared by covalent conjugation and were characterized by fluorescence spectral analysis. GNP and SNP were coated with the labeled conjugates of BSA and chitosan by adsorption. The soluble Rho-BSA or Rho-Chi conjugates, uncoated, and conjugate-coated GNP, and SNP were orally administered into 8-week-old rats. After 24 h, rats were euthanized and the liver, kidney, spleen, and thymus were dissected. The tissues were examined ex vivo using a small animal in vivo imaging system. The liver, kidney, and thymus displayed higher fluorescence due to increased accumulation of Rho-BSA or Rho-Chi conjugate-coated nanoparticles (NPs) in the tissues as compared to the spleen where lower fluorescence was noticed. Tissues obtained from rats that were administered Rho-BSA or Rho-Chi conjugate-coated GNP and SNP showed tenfold higher fluorescence intensity as compared to tissues from rats that were given soluble conjugates or NP alone. The results strongly suggest significant tissue distribution of NP following oral administration.


Subject(s)
Chitosan , Metal Nanoparticles , Nanoparticles , Rats , Animals , Gold , Serum Albumin, Bovine , Silver , Rhodamines , Optical Imaging , Particle Size
7.
Biochimie ; 193: 38-63, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34688789

ABSTRACT

The human digestive tract is the cottage to trillions of live microorganisms, which regulate health and illness. A healthy Gut Microbiota (GM) is necessary for preventing microbial growth, body growth, obesity, cancer, diabetes, and enhancing immunity. The equilibrium in GM's composition and the presence/absence of critical species enable specific responses to be essential for the host's better health condition. Research evidences revealed that the dietary plants and their bioactive phytochemicals (BPs) play an extensive and critical role in shaping the GM to get beneficial health effects. BPs are also known to improve gastrointestinal health and reduce the risk of several diseases by modulating GM-mediated cellular and molecular processes. Regular intake of BPs-rich vegetables, fruits, and herbal preparations promotes probiotic bacteria, including Bifidobacteria and Lactobacillus species, while inhibiting unwanted gut residents' development Escherichia coli, and Salmonella typhimurium etc. Upon consumption, BPs contact the GM that gets transformed before being absorbed from the gastrointestinal tract. Biotransformation of BPs by GM is linked with the enhancement of bioactivity/toxicity diminishment of the BPs compared to parental phytochemicals. Therefore, the current review focuses on the role of BPs in shaping GM for the prevention and treatment of human diseases.


Subject(s)
Diabetes Mellitus , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Neoplasms , Obesity , Phytochemicals/therapeutic use , Probiotics/therapeutic use , Diabetes Mellitus/microbiology , Diabetes Mellitus/prevention & control , Humans , Neoplasms/microbiology , Neoplasms/prevention & control , Obesity/microbiology , Obesity/prevention & control , Polyphenols/therapeutic use
8.
Front Pharmacol ; 12: 812474, 2021.
Article in English | MEDLINE | ID: mdl-35185549

ABSTRACT

Green synthesis of nanoparticles is regarded as a safe and non-toxic process over conventional synthesis. Owing to the medicinal value of biologically derived biomolecules and utilizing them in synergy with nanoscience to offer more accurate therapeutic options to various diseases is an emerging field. One such study we present here with highlights of the synthesis and efficacy of biogenic silver nanoparticles produced from the extract of Aspergillus niger SAP2211 (accession number: MK503444.1) as an antimicrobial, anti-cancerous and anti-angiogenic agent. The synthesized Ag-NPs were characterized following UV-vis, FTIR, XRD, SEM and TEM, and were found to possess bactericidal activity against the selected pathogenic microbes, such as Staphylococcus aureus, Escherichia coli, and Salmonella typhi. Further, we evaluated cytotoxicity effect of this biogenic Ag-NPs using MMT assay on normal cardio myoblast (H9C2) and cancerous human cervical carcinoma (HeLa) cells. Doxorubicin used as positive control. This Ag-NPs have shown trivial cytotoxicity at the IC50 concentration on normal cells (IC50 = 47.17 µg/ml) over the cancer cells (IC50 = 8.609 µg/ml) with nearly 7 fold difference, indicating it as a selective anti-cancerous agent in contrast to standard drug doxorubicin (IC50 = 6.338 µg/ml). Further in-vitro assessment of wound healing capability by scratch wound healing assay, invasion by transwell matrigel invasion assay, and apoptosis via DAPI and annexin V-FITC assays were studied in HeLa cells. Synthesized biogenic Ag-NPs have shown to be anti-angiogenic in nature, which was established by in-vivo chick chorioallantois membrane assay. Overall, in vitro studies revealed that biogenic Ag-NPs positively inhibited migration, invasion, and induced apoptosis, and in-vivo CAM assay revealed that intercapillary network was reduced and the angiogenesis was inhibited.

9.
Molecules ; 25(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33113894

ABSTRACT

In this work, we present an ecofriendly, non-hazardous, green synthesis of zinc oxide nanoparticles (ZnO NPs) by leaf extract of Crotalaria verrucosa (C. verrucosa). Total phenolic content, total flavonoid and total protein contents of C. verrucosa were determined. Further, synthesized ZnO NPs was characterized by UV-visible spectroscopy (UV-vis), X-ray diffractometer (XRD), Fourier transform infra-red (FTIR) Spectra, transmission electron microscope (TEM), and Dynamic light scattering (DLS) analysis. UV-vis shows peak at 375 nm which is unique to ZnO NPs. XRD analysis demonstrates the hexagonal phase structures of ZnO NPs. FTIR spectra demonstrates the molecules and bondings associated with the synthesized ZnO NPs and assures the role of phytochemical compounds of C. verrucosa in reduction and capping of ZnO NPs. TEM image exhibits that the prepared ZnO NPs is hexagonal shaped and in size ranged between 16 to 38 nm which is confirmed by DLS. Thermo-gravimetric analysis (TGA) was performed to determine the thermal stability of biosynthesized nanoparticles during calcination. The prepared ZnO NPs showed significant antibacterial potentiality against Gram-positive (S. aureus) and Gram-negative (Proteus vulgaris, Klebsiella pneumoniae, and Escherichia coli) pathogenic bacteria and SEM image shows the generalized mechanism of action in bacterial cell after NPs internalization. In addition, NPs are also found to be effective against the studied cancer cell lines for which cytotoxicity was assessed using MTT assay and results demonstrate highest growth of inhibition at the concentration of 100 µg/mL with IC50 value at 7.07 µg/mL for HeLa and 6.30 µg/mL for DU145 cell lines, in contrast to positive control (C. verrucosa leaf extract) with IC50 of 22.30 µg/mL on HeLa cells and 15.72 µg/mL on DU145 cells. Also, DAPI staining was performed in order to determine the effect on nuclear material due to ZnO NPs treatment in the studied cell lines taking leaf extract as positive control and untreated negative control for comparison. Cell migration assay was evaluated to determine the direct influence of NPs on metastasis that is potential suppression capacity of NPs to tumor cell migration. Outcome of the synthesized ZnO NPs using C. verrucosa shows antimicrobial activity against studied microbes, also cytotoxicity, apoptotic mediated DNA damage and antiproliferative potentiality in the studied carcinoma cells and hence, can be further used in biomedical, pharmaceutical and food processing industries as an effective antimicrobial and anti-cancerous agent.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Crotalaria/chemistry , Nanoparticles/chemistry , Plant Leaves/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Green Chemistry Technology , HeLa Cells , Humans , Microbial Sensitivity Tests , Plant Extracts/chemistry , Zinc Oxide/chemical synthesis
10.
Int J Mol Sci ; 21(17)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899409

ABSTRACT

Scaffolds are important to tissue regeneration and engineering because they can sustain the continuous release of various cell types and provide a location where new bone-forming cells can attach and propagate. Scaffolds produced from diverse processes have been studied and analyzed in recent decades. They are structurally efficient for improving cell affinity and synthetic and mechanical strength. Carbon nanotubes are spongy nanoparticles with high strength and thermal inertness, and they have been used as filler particles in the manufacturing industry to increase the performance of scaffold particles. The regeneration of tissue and organs requires a significant level of spatial and temporal control over physiological processes, as well as experiments in actual environments. This has led to an upsurge in the use of nanoparticle-based tissue scaffolds with numerous cell types for contrast imaging and managing scaffold characteristics. In this review, we emphasize the usage of carbon nanotubes (CNTs) and CNT-polymer composites in tissue engineering and regenerative medicine and also summarize challenges and prospects for their potential applications in different areas.


Subject(s)
Biocompatible Materials/chemistry , Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Polymers/chemistry , Regenerative Medicine , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Humans
11.
Environ Sci Pollut Res Int ; 27(36): 44743-44756, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32876819

ABSTRACT

Microplastics (MPs) with an average size of less than 5 mm, along with nanoplastics (NPs) of an average size of fewer than 0.1 µm are the result of huge plastic waste fragmentation or straight environmental emissions. Pollution from micro- and nanoplastics is a worldwide paradigm that raises environmental and human health concerns. They may also comprise very harmful chemicals that are implemented in plants and animals when MPs/NPs are used that may lead to higher accumulation of these compounds in food chains. In addition, higher surface area-to-volume ratio, characteristic of MPs/NPs can contribute to their potentially harmful impact as other pollutants, like continuous organic contaminants, can also be bio-accumulated and adsorbed. A complex issue correlated with MPs/NPs is their ability to absorb and interact with other common pollutants in the environment, such as metals, pharmaceuticals, and other contaminants. Thus, MPs/NPs can directly influence on destiny and toxicity of these substances to the environment and organisms. In this review, first, we introduce possible sources and formation, their destinies, and environmental impact of MPs/NPs and then explain feasible paths of all these particles entering the human body. Then, the review highlights the effect of MPs/NPs on human health. Finally, it provides a brief summary of the potential as well as the neurological toxicity of MPs/NPs.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Environmental Pollution , Humans , Microplastics , Plastics , Water Pollutants, Chemical/analysis
12.
IET Nanobiotechnol ; 11(1): 52-56, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28476961

ABSTRACT

Herein, the authors developed a new and potential semi-interpenetrating polymer network (semi-IPN) hydrogels of poly vinyl alcohol (PVA), acryl amide and diallyldimethyl ammonium chloride employing chemical cross-linker N, N'-methylene bisacrylamide (NNMBA) and ammonium persulphate as an initiator by radical polymerisation. To analyse the copolymer formation between two monomers and IPN cross-linking reaction, the resulting hydrogel was characterised by Fourier transform infrared spectroscopy and the surface morphology was analysed using scanning electron microscopy. Differential scanning calorimetry and X-ray diffraction studies were also carried out for investigating drug loading and distribution and swelling experiments were carried out for the uptake of water. In vitro release of ciprofloxacin hydrochloride from hydrogel was performed at intestinal conditions. The amount of PVA, NNMBA and total monomer concentration was found to strongly control the drug release behaviour from the hydrogels.


Subject(s)
Acrylic Resins/chemistry , Allyl Compounds/chemistry , Ciprofloxacin/chemistry , Delayed-Action Preparations/chemistry , Hydrogels/chemical synthesis , Nanocapsules/chemistry , Nanocapsules/ultrastructure , Polyvinyl Alcohol/chemistry , Quaternary Ammonium Compounds/chemistry , Absorption, Physicochemical , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Ciprofloxacin/administration & dosage , Cross-Linking Reagents/chemistry , Delayed-Action Preparations/administration & dosage , Diffusion , Nanocapsules/administration & dosage , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...