Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 3(14): 4019-4028, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-36132841

ABSTRACT

Silicon (Si), a beneficial element for plants, is known for its prophylactic effect under stress conditions. Many studies have documented the role of biogenic silica (bulk-Si) in alleviating biotic and abiotic stresses in plants. The scarce amount of the plant-available form of Si (monosilicic acid) in most of the cultivated soil and the limited efficacy of silicate fertilizers (bulk-Si) are the major concerns for the exploration of Si-derived benefits. In this regard, recent advances in nanotechnology have opened up new avenues for crop improvement, where plants can derive benefits associated with Si nanoparticles (SiNPs). Most of the studies have shown the positive effect of SiNPs on the growth and development of plants specifically under stress conditions. In contrast, a few studies have also reported their toxic effects on some plant species. Hence, there is a pertinent need for elaborative research to explore the utility of SiNPs in agriculture. The present review summarizes SiNP synthesis, application, uptake, and role in stimulating plant growth and development. The advantages of SiNPs over conventional bulk-Si fertilizers in agriculture, their efficacy in different plant species, and safety concerns have also been discussed. The gaps in our understanding of various aspects of SiNPs in relation to plants have also been highlighted, which will guide future research in this area. The increased attention towards SiNP-related research will help to realize the true potential of SiNPs in agriculture.

2.
BMC Plant Biol ; 20(1): 74, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32054447

ABSTRACT

BACKGROUND: Pigeon pea (Cajanus cajan L.) is the sixth major legume crop widely cultivated in the Indian sub-continent, Africa, and South-east Asia. Cytoplasmic male-sterility (CMS) is the incompetence of flowering plants to produce viable pollens during anther development. CMS has been extensively utilized for commercial hybrid seeds production in pigeon pea. However, the molecular basis governing CMS in pigeon pea remains unclear and undetermined. In this study transcriptome analysis for exploring differentially expressed genes (DEGs) between cytoplasmic male-sterile line (AKCMS11) and its fertility restorer line (AKPR303) was performed using Illumina paired-end sequencing. RESULTS: A total of 3167 DEGs were identified, of which 1432 were up-regulated and 1390 were down-regulated in AKCMS11 in comparison to AKPR303. By querying, all the 3167 DEGs against TAIR database, 34 pigeon pea homologous genes were identified, few involved in pollen development (EMS1, MS1, ARF17) and encoding MYB and bHLH transcription factors with lower expression in the sterile buds, implying their possible role in pollen sterility. Many of these DEGs implicated in carbon metabolism, tricarboxylic acid cycle (TCA), oxidative phosphorylation and elimination of reactive oxygen species (ROS) showed reduced expression in the AKCMS11 (sterile) buds. CONCLUSION: The comparative transcriptome findings suggest the potential role of these DEGs in pollen development or abortion, pointing towards their involvement in cytoplasmic male-sterility in pigeon pea. The candidate DEGs identified in this investigation will be highly significant for further research, as they could lend a comprehensive basis in unravelling the molecular mechanism governing CMS in pigeon pea.


Subject(s)
Cajanus/physiology , Gene Expression Regulation, Plant/physiology , Plant Infertility/genetics , Plant Proteins/genetics , Cajanus/genetics , Down-Regulation/physiology , Gene Expression Profiling , Plant Proteins/metabolism , Reproduction/genetics , Up-Regulation/physiology
3.
Toxicol Ind Health ; 34(9): 640-652, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30003841

ABSTRACT

There is a dearth of information regarding the safety of silver nanoparticles (Ag NPs) and multiwalled carbon nanotubes (MWCNTs) with respect to their impact on human/animal health and the environment. This study aimed to determine the half-maximum inhibitory concentration (IC50) of Ag NPs and MWCNTs by employing different doses and time interval combinations in buffalo bull spermatozoa. Semen samples containing 100 million spermatozoa each were incubated with 1, 10, 25, 50, 75 and 100 µg/mL of Ag NPs and MWCNTs at 37°C for 30, 60 and 120 min. Sperm viability was monitored by the MTT assay and eosin-nigrosin staining followed by estimation of IC50 values using correlation-regression analysis. Spermatozoa treated with IC50 doses of Ag NPs and MWCNTs were also assessed for different sperm functionality parameters including oxidative stress and membrane integrity. These parameters were observed to be significantly affected in treated spermatozoa compared with the controls. We concluded that both nanomaterials showed cytotoxicity, mediated principally via oxidative stress. This work has provided valuable toxicological information that will serve as a benchmark for future studies aimed at safe use of nanomaterials.


Subject(s)
Metal Nanoparticles/toxicity , Nanotubes, Carbon/toxicity , Silver/toxicity , Spermatozoa/drug effects , Animals , Buffaloes , Dose-Response Relationship, Drug , Inhibitory Concentration 50 , Male , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...