Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 149: 106215, 2024 01.
Article in English | MEDLINE | ID: mdl-37984284

ABSTRACT

The piezoelectric effect is widely known to have a significant physiological function in bone development, remodeling, and fracture repair. As a well-known piezoelectric material, barium titanate is particularly appealing as a scaffold layer to improve bone tissue engineering applications. Currently, the chemical bath deposition method is used to prepare green synthesized barium titanate coatings to improve mechanical and biological characteristics. Molarity of the solutions, an essential parameter in chemical synthesis, is changed at room temperature (0.1-1.2 Molar) to prepare coatings. The XRD spectra for as deposited coatings indicate amorphous behavior, while polycrystalline nature of coatings is observed after annealing (300 °C). Coatings prepared with solutions of relatively low molarities, i.e. from 0.1 to 0.8 M, exhibit mixed tetragonal - cubic phases. However, the tetragonal phase of Perovskite barium titanate is observed using solution molarities of 1.0 M and 1.2 M. Relatively high value of transmission, i.e. ∼80%, is observed for the coatings prepared with high molarities. Band gap of annealed coatings varies between 3.47 and 3.70 eV. For 1.2 M sample, the maximum spontaneous polarization (Ps) is 0.327x10-3 (µC/cm2) and the residual polarization (Pr) is 0.072x10-3 (µC/cm2). For 1.2M solution, a high hardness value (1510 HV) is recorded, with a fracture toughness of 28.80 MPam-1/2. Low values of weight loss, after dipping the coatings in simulated body fluid, is observed. The antibacterial activity of BaTiO3 is tested against E. coli and Bacillus subtilis. Drug encapsulation capability is also tested for different time intervals. As a result, CBD-based coatings are a promising nominee for use as scaffold and protective coatings.


Subject(s)
Escherichia coli , Oxides , Barium/chemistry , Titanium/pharmacology , Titanium/chemistry
2.
J Mech Behav Biomed Mater ; 138: 105635, 2023 02.
Article in English | MEDLINE | ID: mdl-36603524

ABSTRACT

A wide range of bioactive materials have been investigated for tissue engineering and regeneration. Barium titanate is a promising smart material to be used as scaffold for bone tissue engineering. Barium titanate coatings are prepared in the present study using chemical bath deposition technique. Coatings are prepared at room temperature with the variation in solution molarity from 0.1 to 1.2 M. Perovskite tetragonal phase is observed after annealing the samples at 300 °C using 1.0-1.2 M solutions. Normal-anomalous dielectric response is observed for annealed coatings. Maximum transmission of ∼55% and ∼82% is observed under as-prepared and annealed coatings, respectivly. Variation in direct band gap, i.e. 3.45-3.64 eV, is observed with varying molarity. High hardness of the coatings (∼1180 HV) is observed at 1.2M with fracture toughness of ∼22 MPam-1/2. Biodegradation studies show smaller values of weight loss even after immersion in simulated body fluid (SBF) after 26 weeks. Barium titanate coatings also show high antioxidant activity. BaTiO3's antibacterial reaction is evaluated against microorganisms such as Escherichia coli (E. coli) and Staphylococcus aureus. Antibacterial activity shows highest zone of inhibition (∼31 mm) against Staphylococcus aureus bacteria. Quantitative real-time PCR is used to assess the gene expression profile in cultivated cells. Thus, coatings produced without the use of hazardous solvents/reagents utilizing CBD technique are a potential material for biomedical applications.


Subject(s)
Coated Materials, Biocompatible , Escherichia coli , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Barium , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
3.
Mater Sci Eng C Mater Biol Appl ; 120: 111653, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545821

ABSTRACT

Demand of bioactive materials that may create a bacteria-free environment while healing and regenerating the defect area is increasing day by day. Zirconia is a very interesting material because of its biocompatibility and high fracture toughness. In this research work, zirconia nanoparticles (NPs) have been synthesized using sol-gel method. Molarity of sols is varied in the range of 25 to 125 mM. The effect of acidic and basic nature of sols is studied by maintaining acidic (2) and basic (9) pH. As-synthesized NPs are made soluble in deionized (DI) water using tangerine drops. Dissolved NPs are spin coated onto glass substrate prior to characterization. Pure tetragonal phase, observed under all conditions using basic medium (pH 9), is accompanied by smaller crystallite size and unit cell volume. Presence of stabilized zirconia phase leads to higher value of density and higher mechanical strength. Nanodendrites with distinct features are observed for the sample prepared with high molarity using basic medium. Whereas, soft agglomerated nanodendrites are observed using acidic medium. Optical properties show transmission of 60-80% in the visible and infrared regions for acidic based samples and ~84% for basic samples. Direct energy band gap is varied from 4.96 eV to 5.1 eV in acidic (pH 2) and 4.91 eV to 4.97 eV in basic (pH 9) media. FTIR spectra show the formation of fundamental tetragonal band at 490 cm-1 for basic samples. Antibacterial response of zirconia is tested against E. coli, Streptococcus and Bacillus bacteria. Human teeth, bare and zirconia coated, are tested for their possible weight loss after dipping in various beverages. Zirconia coated tooth shows negligible degradation in hardness and weight after 24 hr dipping period. Thus, coatings prepared using water soluble zirconia (WSZ) nanoparticles, without the use of toxic solvents/reagents, are promising material to be used as protective coatings in biomedical applications.


Subject(s)
Escherichia coli , Nanoparticles , Hardness , Humans , Materials Testing , Surface Properties , Zirconium
4.
Life Sci ; 271: 119070, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33465388

ABSTRACT

AIMS: In vivo biodistribution of radio labeled ZrO2 nanoparticles is addressed for better imaging, therapy and diagnosis. Nanoparticles are synthesized by microwave assisted sol-gel technique using Fe3O4 as a stabilizer. Antioxidant assay, hemolytic activity in human blood and biodistribution in rabbits was explored to study the therapeutical as well as in vivo targeted diagnostic applications of as synthesized nanoparticles. MAIN METHODS: Fe3O4 stabilized zirconia nanoparticles are synthesized using microwave assisted sol-gel method. Microwave (MW) powers are varied in the range of 100 to 1000 W. As synthesized nanoparticles are evaluated using different characterizations such as X-ray diffractometer, scanning electron microscope, Raman spectroscopy, impedance analyzer, Vickers micro hardness indenter, FTIR, and UV-Vis spectroscopy. In vitro activity of synthesized nanoparticles is checked in freshly extracted human blood serum. To study biodistribution of Fe3O4 stabilized zirconia nanoparticles in rabbit, technetium-99 m was used for labeling purpose. The labeling efficacy and stability of labeled nanoparticles are also measured with instant thin layer chromatography (ITLC) method. Intravenous injection of 99mTc-Fe3O4 stabilized zirconia nanoparticles (0.2 ml), containing 110 MBq of radioactivity, is performed to study the biodistribution; nanoparticles are injected into the ear vein of animal (rabbit). KEY FINDINGS: Zirconia (ZrO2) nanoparticles (NPs) are stabilized using Fe3O4 that were prepared by means of microwave assisted sol-gel method. Crystallite size (~20 nm) agrees well with the values required to stabilize tetragonal zirconia (t-ZrO2). Volume shrinkage results in high value of hardness (~1369). Dielectric constant values, compatible for biomedical application, are observed for tetragonally stabilized samples. Low value of hemolytic response is observed for Fe3O4 stabilized ZrO2 NPs. 99mTc radio labeled ZrO2 NPs proved to be potential candidate to study biodistribution. Biodistribution studies show stability of radiolabeled NPs in the original suspension as well as in blood serum. CT scan of rabbit is performed for several times to check the biodistribution of NPs with time and survival of rabbit. Results suggest that these NPs can also be used as targeted nanoparticles as well as variants of drug payload carrier. SIGNIFICANCE: Results signify that Fe3O4 stabilized ZrO2 nanoparticles synthesized by microwave assisted sol-gel method may be considered as "all-rounder" nanoplatform and are safe enough to be used in diagnostic as well as therapeutic purposes.


Subject(s)
Ferric Compounds/metabolism , Free Radical Scavengers/metabolism , Microwaves , Nanoparticles/metabolism , Radioimmunodetection/methods , Zirconium/metabolism , Animals , Ferric Compounds/chemical synthesis , Humans , Nanoparticles/chemistry , Rabbits , Technetium/metabolism , Tissue Distribution/physiology , X-Ray Diffraction/methods , Zirconium/chemistry
5.
J Mech Behav Biomed Mater ; 104: 103621, 2020 04.
Article in English | MEDLINE | ID: mdl-32174388

ABSTRACT

Use of ceramic coatings has increased dramatically in orthopedics by improving their wear resistance and consequent long-term stability. Such stability involves not only the strength of material but also its resistance toward bacterial attacks. Amongst all ceramics, zirconia is selected in the present study due to its white color and high value of hardness making it a potential candidate to be used as implants and their coatings. In the present study effect of varying microwave powers (i.e. 100W, 200W, 300W, 400W, 500W, 600W, 700W, 800W, 900W and 1000W) on sol-gel synthesized glucose and fructose added zirconia coatings has been investigated. Formation of mixed tetragonal - monoclinic phases has been observed at relatively low microwave powers, i.e. 100-500W. However, at 600-1000W phase pure tetragonal zirconia is observed without any post heat treatment. FTIR analysis confirms formation of tetragonal phase of zirconia at 600-1000W microwave power. XPS results confirm the binding energies of Zr 3d and O 1s of microwave assisted zirconia coatings. High value of transmittance, i.e. ~90%, is observed at higher microwave powers. Variation in microwave powers is observed to tune the energy band gap of zirconia coatings in the range of 4.2-5.1 eV. Dielectric constant of 8-10 at log f = 4 is observed. High value of hardness and fracture toughness i.e. 1231 HV and 24.85 MPam-1/2, respectively, is observed for stabilized tetragonal zirconia coatings. Stabilized glucose fructose added zirconia shows strong antioxidant activity. Zirconia coatings are tested against Staphylococcus aureus bacteria for their potential application to treat bone infection. Results suggest that stabilized tetragonal zirconia can be successfully employed for orthopedic coatings.


Subject(s)
Fructose , Glucose , Anti-Bacterial Agents , Ceramics , Materials Testing , Zirconium
SELECTION OF CITATIONS
SEARCH DETAIL
...