Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Oncol ; 32(4): 500-511, 2021 04.
Article in English | MEDLINE | ID: mdl-33418062

ABSTRACT

BACKGROUND: Different endogenous and exogenous mutational processes act over the evolutionary history of a malignant tumor, driven by abnormal DNA editing, mutagens or age-related DNA alterations, among others, to generate the specific mutational landscape of each individual tumor. The signatures of these mutational processes can be identified in large genomic datasets. We investigated the hypothesis that genomic patterns of mutational signatures are associated with the clinical behavior of breast cancer, in particular chemotherapy response and survival, with a particular focus on therapy-resistant disease. PATIENTS AND METHODS: Whole exome sequencing was carried out in 405 pretherapeutic samples from the prospective neoadjuvant multicenter GeparSepto study. We analyzed 11 mutational signatures including biological processes such as APOBEC-mutagenesis, homologous recombination deficiency (HRD), mismatch repair deficiency and also age-related or tobacco-induced alterations. RESULTS: Different subgroups of breast carcinomas were defined mainly by differences in HRD-related and APOBEC-related mutational signatures and significant differences between hormone-receptor (HR)-negative and HR-positive tumors as well as correlations with age, Ki-67 and immunological parameters were observed. We could identify mutational processes that were linked to increased pathological complete response rates to neoadjuvant chemotherapy with high significance. In univariate analyses for HR-positive tumors signatures, S3 (HRD, P < 0.001) and S13 (APOBEC, P = 0.001) as well as exonic mutation rate (P = 0.002) were significantly correlated with increased pathological complete response rates. The signatures S3 (HRD, P = 0.006) and S4 (tobacco, P = 0.011) were prognostic for reduced disease-free survival of patients with chemotherapy-resistant tumors. CONCLUSION: The results of this investigation suggest that the clinical behavior of a tumor, in particular, response to neoadjuvant chemotherapy and disease-free survival of therapy-resistant tumors, could be predicted by the composition of mutational signatures as an indicator of the individual genomic history of a tumor. After additional validations, mutational signatures might be used to identify tumors with an increased response rate to neoadjuvant chemotherapy and to define therapy-resistant subgroups for future therapeutic interventions.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Humans , Mutation , Prognosis , Prospective Studies
2.
Ann Oncol ; 26(5): 880-887, 2015 May.
Article in English | MEDLINE | ID: mdl-25732040

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common malignant brain cancer occurring in adults, and is associated with dismal outcome and few therapeutic options. GBM has been shown to predominantly disrupt three core pathways through somatic aberrations, rendering it ideal for precision medicine approaches. METHODS: We describe a 35-year-old female patient with recurrent GBM following surgical removal of the primary tumour, adjuvant treatment with temozolomide and a 3-year disease-free period. Rapid whole-genome sequencing (WGS) of three separate tumour regions at recurrence was carried out and interpreted relative to WGS of two regions of the primary tumour. RESULTS: We found extensive mutational and copy-number heterogeneity within the primary tumour. We identified a TP53 mutation and two focal amplifications involving PDGFRA, KIT and CDK4, on chromosomes 4 and 12. A clonal IDH1 R132H mutation in the primary, a known GBM driver event, was detectable at only very low frequency in the recurrent tumour. After sub-clonal diversification, evidence was found for a whole-genome doubling event and a translocation between the amplified regions of PDGFRA, KIT and CDK4, encoded within a double-minute chromosome also incorporating miR26a-2. The WGS analysis uncovered progressive evolution of the double-minute chromosome converging on the KIT/PDGFRA/PI3K/mTOR axis, superseding the IDH1 mutation in dominance in a mutually exclusive manner at recurrence, consequently the patient was treated with imatinib. Despite rapid sequencing and cancer genome-guided therapy against amplified oncogenes, the disease progressed, and the patient died shortly after. CONCLUSION: This case sheds light on the dynamic evolution of a GBM tumour, defining the origins of the lethal sub-clone, the macro-evolutionary genomic events dominating the disease at recurrence and the loss of a clonal driver. Even in the era of rapid WGS analysis, cases such as this illustrate the significant hurdles for precision medicine success.


Subject(s)
Brain Neoplasms/genetics , Chromosomes, Human , Glioblastoma/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Adult , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Chemotherapy, Adjuvant , Cyclin-Dependent Kinase 4/genetics , Dacarbazine/analogs & derivatives , Dacarbazine/therapeutic use , Disease Progression , Fatal Outcome , Female , Genetic Association Studies , Genetic Predisposition to Disease , Glioblastoma/enzymology , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Imatinib Mesylate/therapeutic use , Neoplasm Grading , Neoplasm Recurrence, Local , Neurosurgical Procedures , Phenotype , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-kit/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Temozolomide , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL