Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 17(38): 25283-96, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26355417

ABSTRACT

Different N-substituted phenothiazines have been synthesized and their electrochemical behavior has been investigated in CH3CN in order to design the best polyphenothiazine based cathodic material candidate for lithium batteries. These compounds exhibit two successive reversible one-electron oxidation processes. Ab initio calculations demonstrate that the potential of the first process is a result of both the hybridization effects between the substituent and the phenothiazine unit as well as the change of conformation of the phenothiazine heterocycle during the oxidation process. More specifically, we show that an asymmetric molecular orbital spreading throughout an external cycle of the phenothiazine unit and the alkyl fragment is formed only if the alkyl fragment is long enough (from the methyl moiety onwards) and is at the origin of the bent conformation for N-substituted phenothiazines during oxidation. Electrochemical investigations supported by ab initio calculations allow the selection of a phenothiazinyl unit which is then polymerized by a Suzuki coupling strategy to avoid the common solubilization issue in carbonate-based liquid electrolytes of lithium cells. The first electrochemical measurements performed show that phenothiazine derivatives pave the way for a promising family of redox polymers intended to be used as organic positives for lithium batteries.

2.
J Phys Chem B ; 109(7): 2487-92, 2005 Feb 24.
Article in English | MEDLINE | ID: mdl-16851246

ABSTRACT

The mobilities of lithium, PF6- and solvents in the electrolyte LiPF6-(ethylene carbonate-dimethyl carbonate-diethyl carbonate) were measured using the pulsed gradient spin-echo NMR. They were compared to those of the same electrolyte filling a macroporous poly(vinylidene fluoride) membrane. The conductivity decrease resulting in the incorporation of this macroporous membrane and the cationic transport number were analyzed in terms of (i) solvent/polymer and solvent/salt interactions, (ii) ionic dissociation, and (iii) tortuosity.

3.
J Phys Condens Matter ; 8(38): 7005-17, 1996 Sep 16.
Article in English | MEDLINE | ID: mdl-22146538

ABSTRACT

The physical properties of the ionic conductor [Formula: see text], obtained by dissolution of lithium trifluoromethanesulphonylimide in poly(propylene oxide), have been investigated for several values of n. The glass transition temperature [Formula: see text] has been established from both DSC and NMR techniques. The diffusion coefficients of [Formula: see text]-containing species have been determined by the pulsed magnetic field gradient technique. The behaviour of the proton relaxation time [Formula: see text] versus temperature and concentration has been correlated to the glass temperature. The behaviour of the proton transverse relaxation function, obtained by the spin-echo technique, has been interpreted using a simple model in which two regimes and consequently two transverse relaxation times coexist and are assigned to the `entangled' and `non-entangled' parts of the high-molecular-weight polymer chains investigated.

SELECTION OF CITATIONS
SEARCH DETAIL