Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32900697

ABSTRACT

INTRODUCTION: Diabetic nephropathy (DN) is the leading cause of chronic kidney disease worldwide. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway participates in the development and progression of DN. Among the different mechanisms involved in JAK/STAT negative regulation, the family of suppressor of cytokine signaling (SOCS) proteins has been proposed as a new target for DN. Our aim was to evaluate the effect of SOCS1 mimetic peptide in a mouse model of obesity and type 2 diabetes (T2D) with progressive DN. RESEARCH DESIGN AND METHODS: Six-week-old BTBR (black and tan brachyuric) mice with the ob/ob (obese/obese) leptin-deficiency mutation were treated for 7 weeks with two different doses of active SOCS1 peptide (MiS1 2 and 4 µg/g body weight), using inactive mutant peptide (Mut 4 µg) and vehicle as control groups. At the end of the study, the animals were sacrificed to obtain blood, urine and kidney tissue for further analysis. RESULTS: Treatment of diabetic mice with active peptide significantly decreased urine albumin to creatinine ratio by up to 50%, reduced renal weight, glomerular and tubulointerstitial damage, and restored podocyte numbers. Kidneys from treated mice exhibited lower inflammatory infiltrate, proinflammatory gene expression and STAT activation. Concomitantly, active peptide administration modulated redox balance markers and reduced lipid peroxidation and cholesterol transporter gene expression in diabetic kidneys. CONCLUSION: Targeting SOCS proteins by mimetic peptides to control JAK/STAT signaling pathway ameliorates albuminuria, morphological renal lesions, inflammation, oxidative stress and lipotoxicity, and could be a therapeutic approach to T2D kidney disease.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Anti-Inflammatory Agents , Antioxidants/pharmacology , Antioxidants/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Mice , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling Proteins
2.
Int J Mol Sci ; 21(12)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545818

ABSTRACT

Diabetic nephropathy (DN) is a multifactorial disease characterized by hyperglycemia and close interaction of hemodynamic, metabolic and inflammatory factors. Nuclear factor-κB (NF-κB) is a principal matchmaker linking hyperglycemia and inflammation. The present work investigates the cell-permeable peptide containing the inhibitor of kappa B kinase γ (IKKγ)/NF-κB essential modulator (NEMO)-binding domain (NBD) as therapeutic option to modulate inflammation in a preclinical model of type 2 diabetes (T2D) with DN. Black and tan, brachyuric obese/obese mice were randomized into 4 interventions groups: Active NBD peptide (10 and 6 µg/g body weight); Inactive mutant peptide (10 µg/g); and vehicle control. In vivo/ex vivo fluorescence imaging revealed efficient delivery of NBD peptide, systemic biodistribution and selective renal metabolization. In vivo administration of active NBD peptide improved albuminuria (>40% reduction on average) and kidney damage, decreased podocyte loss and basement membrane thickness, and modulated the expression of proinflammatory and oxidative stress markers. In vitro, NBD blocked IKK-mediated NF-κB induction and target gene expression in mesangial cells exposed to diabetic-like milieu. These results constitute the first nephroprotective effect of NBD peptide in a T2D mouse model that recapitulates the kidney lesions observed in DN patients. Targeting IKK-dependent NF-κB activation could be a therapeutic strategy to combat kidney inflammation in DN.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/drug therapy , Intracellular Signaling Peptides and Proteins/chemistry , Serum Albumin/drug effects , Signal Transduction/drug effects , Animals , Binding Sites , Cell Line , Cell-Penetrating Peptides/pharmacology , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/diagnostic imaging , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Disease Models, Animal , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , NF-kappa B/metabolism , RAW 264.7 Cells , Random Allocation , Tissue Distribution , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...