Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(15): 19681-19690, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564236

ABSTRACT

Swirling spin textures, including topologically nontrivial states, such as skyrmions, chiral domain walls, and magnetic vortices, have garnered significant attention within the scientific community due to their appeal from both fundamental and applied points of view. However, their creation, controlled manipulation, and stability are typically constrained to certain systems with specific crystallographic symmetries, bulk or interface interactions, and/or a precise stacking sequence of materials. Recently, a new approach has shown potential for the imprint of magnetic radial vortices in soft ferromagnetic compounds making use of the stray field of YBa2Cu3O7-δ superconducting microstructures in ferromagnet/superconductor (FM/SC) hybrids at temperatures below the superconducting transition temperature (TC). Here, we explore the lower size limit for the imprint of magnetic radial vortices in square and disc shaped structures as well as the persistence of these spin textures above TC, with magnetic domains retaining partial memory. Structures with circular geometry and with FM patterned to smaller radius than the superconductor island facilitate the imprinting of magnetic radial vortices and improve their stability above TC, in contrast to square structures where the presence of magnetic domains increases the dipolar energy. Micromagnetic modeling coupled with a SC field model reveals that the stabilization mechanism above TC is mediated by microstructural defects. Superconducting control of swirling spin textures, and their stabilization above the superconducting transition temperature by means of defect engineering holds promising prospects for shaping superconducting spintronics based on magnetic textures.

2.
Adv Mater ; 35(33): e2211176, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37046341

ABSTRACT

Generation, manipulation, and sensing of magnetic domain walls are cornerstones in the design of efficient spintronic devices. Half-metals are amenable for this purpose as large low field magnetoresistance signals can be expected from spin accumulation at spin textures. Among half metals, La1- x Srx MnO3 (LSMO) manganites are considered as promising candidates for their robust half-metallic ground state, Curie temperature above room temperature (Tc = 360 K, for x = 1/3), and chemical stability. Yet domain wall magnetoresistance is poorly understood, with large discrepancies in the reported values and conflicting interpretation of experimental data due to the entanglement of various source of magnetoresistance, namely, spin accumulation, anisotropic magnetoresistance, and colossal magnetoresistance. In this work, the domain wall magnetoresistance is measured in LSMO cross-shape nanowires with single-domain walls nucleated across the current path. Magnetoresistance values above 10% are found to be originating at the spin accumulation caused by the mistracking effect of the spin texture of the domain wall by the conduction electrons. Fundamentally, this result shows the importance on non-adiabatic processes at spin textures despite the strong Hund coupling to the localized t2g electrons of the manganite. These large magnetoresistance values are high enough for encoding and reading magnetic bits in future oxide spintronic sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...