Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 168: 115658, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37832404

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA) is a highly lethal cancer originated in the biliary tree. Available treatments for CCA are scarcely effective, partly due to mechanisms of chemoresistance, such as aberrant activation of Wnt/ß-catenin pathway and dysfunctional p53. AIM: To evaluate the impact of enhancing the expression of negative regulators of the Wnt/ß-catenin pathway (AXIN1, AXIN2, and GSK3B) and the tumor suppressor gene TP53. METHODS: Gene expression in paired samples of CCA and adjacent non-tumor liver tissue was determined by RT-qPCR and immunohistochemistry (IHC). Using lentiviral vectors, CCA cells were transduced with genes of interest to assess their impact on the resistome (TLDA), apoptosis (annexin V/propidium iodide), and decreased cell viability (MTT). RESULTS: IHC revealed marked nuclear localization of ß-catenin, consistent with Wnt/ß-catenin pathway activation. In silico analysis with data from TCGA showed heterogeneous down-regulation of AXIN1, AXIN2, and GSK3B in CCA. Enhancing the expression of AXIN1, AXIN2, and GSK3B in CCA cells was not enough to block the activity of this signaling pathway or significantly modify resistance to 5-FU, gemcitabine, and platinated drugs. Consistent with impaired p53 function, CDKN1A was down-regulated in CCA. Forced TP53 expression induced p21 up-regulation and reduced cell proliferation. Moreover, the resistome was modified (FAS, BAX, TYMP, and CES2 up-regulation along with DHFR, RRM1, and BIRC5 down-regulation), which was accompanied by enhanced sensitivity to some antitumor drugs, mainly platinated drugs. CONCLUSION: Enhancing TP53 expression, but not that of AXIN1, AXIN2, and GSK3B, in CCA cells may be a useful strategy to sensitize CCA to antitumor drugs.


Subject(s)
Antineoplastic Agents , Bile Duct Neoplasms , Cholangiocarcinoma , Humans , beta Catenin/genetics , beta Catenin/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Antineoplastic Agents/pharmacology , Wnt Signaling Pathway , Cell Proliferation , Cell Line, Tumor , Bile Ducts, Intrahepatic/metabolism
2.
Biomed Pharmacother ; 165: 115209, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37499450

ABSTRACT

The response of advanced hepatocellular carcinoma (HCC) to pharmacological treatments is unsatisfactory and heterogeneous. Inactivation of tumor suppressor genes (TSGs) by genetic and epigenetic events is frequent in HCC. This study aimed at investigating the impact of frequently altered TSGs on HCC chemoresistance. TSG alterations were screened by in silico analysis of TCGA-LIHC database, and their relationship with survival was investigated. These TSGs were silenced in HCC-derived cell lines using CRISPR/Cas9. TLDA was used to determine the expression of a panel of 94 genes involved in the resistome. Drug sensitivity, cell proliferation, colony formation and cell migration were assessed. The in silico study revealed the down-regulation of frequently inactivated TSGs in HCC (ARID1A, PTEN, CDH1, and the target of p53, CDKN1A). The presence of TP53 and ARID1A variants and the low expression of PTEN and CDH1 correlated with a worse prognosis of HCC patients. In PLC/PRF/5 cells, ARID1A knockout (ARID1AKO) induced increased sensitivity to cisplatin, doxorubicin, and cabozantinib, without affecting other characteristics of malignancy. PTENKO and E-CadKO showed minimal changes in malignancy, resistome, and drug response. In p53KO HepG2 cells, enhanced malignant properties and higher resistance to cisplatin, doxorubicin, sorafenib, and regorafenib were found. This was associated with changes in the resistome. In conclusion, the altered expression and function of several TSGs are involved in the heterogeneity of HCC chemoresistance and other features of malignancy, contributing to the poor prognosis of these patients. Individual identification of pharmacological vulnerabilities is required to select the most appropriate treatment for each patient.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Tumor Suppressor Protein p53/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Cisplatin/therapeutic use , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Genes, Tumor Suppressor , Drug Resistance, Multiple , Phenotype
3.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768380

ABSTRACT

Hepatocellular carcinoma (HCC) is a primary liver tumor with high lethality and increasing incidence worldwide. While tumor resection or liver transplantation is effective in the early stages of the disease, the therapeutic options for advanced HCC remain limited and the benefits are temporary. Thus, novel therapeutic targets and more efficacious treatments against this deadly cancer are urgently needed. Here, we investigated the pathogenetic and therapeutic role of eukaryotic initiation factor 4A1 (eIF4A1) in this tumor type. We observed consistent eIF4A1 upregulation in HCC lesions compared with non-tumorous surrounding liver tissues. In addition, eIF4A1 levels were negatively correlated with the prognosis of HCC patients. In HCC lines, the exposure to various eIF4A inhibitors triggered a remarkable decline in proliferation and augmented apoptosis, paralleled by the inhibition of several oncogenic pathways. Significantly, anti-growth effects were achieved at nanomolar concentrations of the eIF4A1 inhibitors and were further increased by the simultaneous administration of the pan mTOR inhibitor, Rapalink-1. In conclusion, our results highlight the pathogenetic relevance of eIF4A1 in HCC and recommend further evaluation of the potential usefulness of pharmacological combinations based on eIF4A and mTOR inhibitors in treating this aggressive tumor.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Prognosis , Apoptosis , Cell Proliferation , Cell Line, Tumor
4.
Semin Liver Dis ; 42(1): 87-103, 2022 02.
Article in English | MEDLINE | ID: mdl-34544160

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignancy with poor prognosis when diagnosed at advanced stages in which curative treatments are no longer applicable. A small group of these patients may still benefit from transarterial chemoembolization. The only therapeutic option for most patients with advanced HCC is systemic pharmacological treatments based on tyrosine kinase inhibitors (TKIs) and immunotherapy. Available drugs only slightly increase survival, as tumor cells possess additive and synergistic mechanisms of pharmacoresistance (MPRs) prior to or enhanced during treatment. Understanding the molecular basis of MPRs is crucial to elucidate the genetic signature underlying HCC resistome. This will permit the selection of biomarkers to predict drug treatment response and identify tumor weaknesses in a personalized and dynamic way. In this article, we have reviewed the role of MPRs in current first-line drugs and the combinations of immunotherapeutic agents with novel TKIs being tested in the treatment of advanced HCC.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Immunologic Factors/therapeutic use , Immunotherapy , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology
5.
Cancers (Basel) ; 12(8)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751679

ABSTRACT

Gastric adenocarcinoma (GAC) is the most common histological type of gastric cancer, the fifth according to the frequency and the third among the deadliest cancers. GAC high mortality is due to a combination of factors, such as silent evolution, late clinical presentation, underlying genetic heterogeneity, and effective mechanisms of chemoresistance (MOCs) that make the available antitumor drugs scarcely useful. MOCs include reduced drug uptake (MOC-1a), enhanced drug efflux (MOC-1b), low proportion of active agents in tumor cells due to impaired pro-drug activation or active drug inactivation (MOC-2), changes in molecular targets sensitive to anticancer drugs (MOC-3), enhanced ability of cancer cells to repair drug-induced DNA damage (MOC-4), decreased function of pro-apoptotic factors versus up-regulation of anti-apoptotic genes (MOC-5), changes in tumor cell microenvironment altering the response to anticancer agents (MOC-6), and phenotypic transformations, including epithelial-mesenchymal transition (EMT) and the appearance of stemness characteristics (MOC-7). This review summarizes updated information regarding the molecular bases accounting for these mechanisms and their impact on the lack of clinical response to the pharmacological treatment currently used in GAC. This knowledge is required to identify novel biomarkers to predict treatment failure and druggable targets, and to develop sensitizing strategies to overcome drug refractoriness in GAC.

6.
Cancers (Basel) ; 12(6)2020 May 31.
Article in English | MEDLINE | ID: mdl-32486461

ABSTRACT

The diagnosis of adenocarcinomas located in the pancreas head, i.e., distal cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC), constitutes a clinical challenge because they share many symptoms, are not easily distinguishable using imaging techniques and accurate biomarkers are not available. Searching for biomarkers with potential usefulness in the differential diagnosis of these tumors, we have determined serum metabolomic profiles in healthy controls and patients with dCCA, PDAC or benign pancreatic diseases (BPD). Ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis was performed in serum samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42) and control (n = 25) individuals, divided into discovery and validation cohorts. This approach permitted 484 metabolites to be determined, mainly lipids and amino acids. The analysis of the results led to the proposal of a logistic regression model able to discriminate patients with dCCA and PDAC (AUC value of 0.888) based on the combination of serum levels of nine metabolites (acylcarnitine AC(16:0), ceramide Cer(d18:1/24:0), phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20:3), lysophosphatidylcholines PC(20:0/0:0) and PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0), and sphingomyelins SM(d18:2/22:0) and SM(d18:2/23:0)) and CA 19-9. In conclusion, we propose a novel specific panel of serum metabolites that can help in the differential diagnosis of dCCA and PDAC. Further validation of their clinical usefulness in prospective studies is required.

7.
Cancers (Basel) ; 12(6)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585893

ABSTRACT

The poor outcome of patients with non-surgically removable advanced hepatocellular carcinoma (HCC), the most frequent type of primary liver cancer, is mainly due to the high refractoriness of this aggressive tumor to classical chemotherapy. Novel pharmacological approaches based on the use of inhibitors of tyrosine kinases (TKIs), mainly sorafenib and regorafenib, have provided only a modest prolongation of the overall survival in these HCC patients. The present review is an update of the available information regarding our understanding of the molecular bases of mechanisms of chemoresistance (MOC) with a significant impact on the response of HCC to existing pharmacological tools, which include classical chemotherapeutic agents, TKIs and novel immune-sensitizing strategies. Many of the more than one hundred genes involved in seven MOC have been identified as potential biomarkers to predict the failure of treatment, as well as druggable targets to develop novel strategies aimed at increasing the sensitivity of HCC to pharmacological treatments.

8.
Int J Mol Sci ; 21(8)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32326111

ABSTRACT

The liver plays a pivotal role in drug handling due to its contribution to the processes of detoxification (phases 0 to 3). In addition, the liver is also an essential organ for the mechanism of action of many families of drugs, such as cholesterol-lowering, antidiabetic, antiviral, anticoagulant, and anticancer agents. Accordingly, the presence of genetic variants affecting a high number of genes expressed in hepatocytes has a critical clinical impact. The present review is not an exhaustive list but a general overview of the most relevant variants of genes involved in detoxification phases. The available information highlights the importance of defining the genomic profile responsible for the hepatic handling of drugs in many ways, such as (i) impaired uptake, (ii) enhanced export, (iii) altered metabolism due to decreased activation of prodrugs or enhanced inactivation of active compounds, and (iv) altered molecular targets located in the liver due to genetic changes or activation/downregulation of alternative/compensatory pathways. In conclusion, the advance in this field of modern pharmacology, which allows one to predict the outcome of the treatments and to develop more effective and selective agents able to overcome the lack of effect associated with the existence of some genetic variants, is required to step forward toward a more personalized medicine.


Subject(s)
Genetic Variation , Inactivation, Metabolic/genetics , Liver/metabolism , Pharmacogenomic Variants , Alleles , Animals , Humans , Metabolic Detoxication, Phase I/genetics , Metabolic Detoxication, Phase II/genetics , Mutation , Organic Anion Transporters, Sodium-Independent/chemistry , Organic Anion Transporters, Sodium-Independent/genetics , Oxidation-Reduction , Polymorphism, Single Nucleotide
9.
Pharmacogenomics ; 20(13): 957-970, 2019 08.
Article in English | MEDLINE | ID: mdl-31486734

ABSTRACT

An important factor determining the pharmacological response to antitumor drugs is their concentrations in cancer cells, which accounts for the net interaction with their intracellular molecular targets. Accordingly, mechanisms leading to reduced intracellular levels of active agents play a crucial role in cancer chemoresistance. These include impaired drug uptake through solute carrier (SLC) proteins and efficient drug export by ATP-dependent pumps belonging to the ATP-binding cassette (ABC) superfamily of proteins. Since the net movement of drugs in-and-out the cells depends on the overall expression of carrier proteins, defining the so-called transportome, special attention has been devoted to the study of transcriptome regarding these proteins. Nevertheless, genetic variants affecting SLC and ABC genes may markedly affect the bioavailability and, hence, the efficacy of anticancer drugs.


Subject(s)
Carcinoma, Hepatocellular/genetics , Digestive System Diseases/genetics , Liver Neoplasms/genetics , ATP-Binding Cassette Transporters/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Transport/drug effects , Biological Transport/genetics , Carcinoma, Hepatocellular/drug therapy , Digestive System Diseases/drug therapy , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Humans , Liver Neoplasms/drug therapy , Pharmacogenetics/methods
10.
Cancer Drug Resist ; 2(3): 680-709, 2019.
Article in English | MEDLINE | ID: mdl-35582588

ABSTRACT

Primary liver cancers constitute the fourth most deadly group of cancers. Their poor prognosis is due in part to the pre-existence and/or development, often during treatment, of powerful mechanisms accounting for the poor response of cancer cells to antitumor drugs. These include both impaired gene expression and the appearance of spliced variants, polymorphisms and mutations, affecting the function of genes leading to the reduction in intracellular concentrations of active agents, changes in molecular targets and survival pathways, altered tumor microenvironment and phenotypic transition. The present review summarizes available information regarding the role of germline and somatic mutations affecting drug transporters, enzymes involved in drug metabolism, organelles and signaling molecules related to liver cancer chemoresistance. A more complete picture of the actual complexity of this problem is urgently needed for carrying out further pharmacogenomic studies aimed to improve the management of patients suffering from hepatocellular carcinoma or cholangiocarcinoma.

11.
Oncotarget ; 9(47): 28474-28485, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29983874

ABSTRACT

BACKGROUND: Chemoresistance often limits the success of the pharmacological treatment in acute myeloid leukemia (AML) patients. Although positive results have been obtained with tyrosine kinase inhibitors (TKIs), such as sorafenib, especially in patients with Fms-like tyrosine kinase 3 (FLT3)-positive AML, the success of chemotherapy is very heterogeneous. Here we have investigated in vitro whether the transportome (set of expressed plasma membrane transporters) is involved in the differential response of AML to sorafenib. METHODS: The sensitivity to sorafenib-induced cell death (MTT test and anexin V/7-AAD method) was evaluated in five different cell lines: MOLM-13, OCI-AML2, HL-60, HEL and K-562. The transportome was characterized by measuring mRNA using RT-qPCR. Drug uptake/efflux was determined by flow cytometry using specific substrates and inhibitors. RESULTS: The cytostatic response to sorafenib was: MOLM-13>>OCI-AML2>HL-60>HEL≈K-562. Regarding efflux pumps, MDR1 was highly expressed in HEL>K-562≈MOLM-13, but not in OCI-AML2 and HL-60. BCRP and MPR3 expression was low in all cell lines, whereas MRP4 and MRP5 expression was from moderate to high. Flow cytometry studies demonstrated that MRP4, but not MRP5, was functional. The expression of the organic cation transporter 1 (OCT1), involved in sorafenib uptake, was MOLM-13>OCI-AML2≈HL-60 and non detectable in HEL and K-562. Transfection of HEL cells with OCT1 increased the sensitivity of these cells to sorafenib, whereas inactive genetic variants failed to induce this change. CONCLUSION: Together with changes in the expression/function of receptors targeted by TKIs, the expression of plasma membrane transporters involved in sorafenib uptake/efflux may affect the response of leukemia cells to this drug.

SELECTION OF CITATIONS
SEARCH DETAIL
...