Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Behav Brain Funct ; 20(1): 6, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549164

ABSTRACT

BACKGROUND: Spatial memory deficits and reduced neuronal survival contribute to cognitive decline seen in the aging process. Current treatments are limited, emphasizing the need for innovative therapeutic strategies. This research explored the combined effects of intranasally co-administered galanin receptor 2 (GALR2) and neuropeptide Y1 receptor (NPY1R) agonists, recognized for their neural benefits, on spatial memory, neuronal survival, and differentiation in adult rats. After intranasal co-delivery of the GALR2 agonist M1145 and a NPY1R agonist to adult rats, spatial memory was tested with the object-in-place task 3 weeks later. We examined neuronal survival and differentiation by assessing BrdU-IR profiles and doublecortin (DCX) labeled cells, respectively. We also used the GALR2 antagonist M871 to confirm GALR2's crucial role in promoting cell growth. RESULTS: Co-administration improved spatial memory and increased the survival rate of mature neurons. The positive effect of GALR2 in cell proliferation was confirmed by the nullifying effects of its antagonist. The treatment boosted DCX-labeled newborn neurons and altered dendritic morphology, increasing cells with mature dendrites. CONCLUSIONS: Our results show that intranasal co-delivery of GALR2 and NPY1R agonists improves spatial memory, boosts neuronal survival, and influences neuronal differentiation in adult rats. The significant role of GALR2 is emphasized, suggesting new potential therapeutic strategies for cognitive decline.


Subject(s)
Cognitive Dysfunction , Receptor, Galanin, Type 2 , Rats , Animals , Receptor, Galanin, Type 2/agonists , Receptor, Galanin, Type 2/physiology , Receptors, Neuropeptide Y , Galanin/pharmacology , Neurogenesis , Cognition , Cognitive Dysfunction/drug therapy
2.
Br J Pharmacol ; 181(6): 840-878, 2024 03.
Article in English | MEDLINE | ID: mdl-37706346

ABSTRACT

Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Adipokines , Brain/metabolism , Adipose Tissue/physiology , Blood-Brain Barrier/metabolism
3.
Biomedicines ; 11(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37509487

ABSTRACT

In the last decade, the role of the microbiota-gut-brain axis has been gaining momentum in the context of many neurodegenerative and metabolic disorders, including Alzheimer's disease (AD) and diabetes, respectively. Notably, a balanced gut microbiota contributes to the epithelial intestinal barrier maintenance, modulates the host immune system, and releases neurotransmitters and/or neuroprotective short-chain fatty acids. However, dysbiosis may provoke immune dysregulation, impacting neuroinflammation through peripheral-central immune communication. Moreover, lipopolysaccharide or detrimental microbial end-products can cross the blood-brain barrier and induce or at least potentiate the neuropathological progression of AD. Thus, after repeated failure to find a cure for this dementia, a necessary paradigmatic shift towards considering AD as a systemic disorder has occurred. Here, we present an overview of the use of germ-free and/or transgenic animal models as valid tools to unravel the connection between dysbiosis, metabolic diseases, and AD, and to investigate novel therapeutical targets. Given the high impact of dietary habits, not only on the microbiota but also on other well-established AD risk factors such as diabetes or obesity, consistent changes of lifestyle along with microbiome-based therapies should be considered as complementary approaches.

5.
Int J Mol Sci ; 23(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35628216

ABSTRACT

Alzheimer's disease (AD) constitutes the most prominent form of dementia among elderly individuals worldwide. Disease modeling using murine transgenic mice was first initiated thanks to the discovery of heritable mutations in amyloid precursor protein (APP) and presenilins (PS) genes. However, due to the repeated failure of translational applications from animal models to human patients, along with the recent advances in genetic susceptibility and our current understanding on disease biology, these models have evolved over time in an attempt to better reproduce the complexity of this devastating disease and improve their applicability. In this review, we provide a comprehensive overview about the major pathological elements of human AD (plaques, tauopathy, synaptic damage, neuronal death, neuroinflammation and glial dysfunction), discussing the knowledge that available mouse models have provided about the mechanisms underlying human disease. Moreover, we highlight the pros and cons of current models, and the revolution offered by the concomitant use of transgenic mice and omics technologies that may lead to a more rapid improvement of the present modeling battery.


Subject(s)
Alzheimer Disease , Aged , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Plaque, Amyloid
6.
Neuroscientist ; 28(6): 572-593, 2022 12.
Article in English | MEDLINE | ID: mdl-33769131

ABSTRACT

Alzheimer's disease (AD) is an incurable neurodegenerative disease affecting over 45 million people worldwide. Transgenic mouse models have made remarkable contributions toward clarifying the pathophysiological mechanisms behind the clinical manifestations of AD. However, the limited ability of these in vivo models to accurately replicate the biology of the human disease have precluded the translation of promising preclinical therapies to the clinic. In this review, we highlight several major pathogenic mechanisms of AD that were discovered using transgenic mouse models. Moreover, we discuss the shortcomings of current animal models and the need to develop reliable models for the sporadic form of the disease, which accounts for the majority of AD cases, as well as human cellular models to improve success in translating results into human treatments.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Humans , Alzheimer Disease/pathology , tau Proteins , Disease Models, Animal , Mice, Transgenic , Amyloid beta-Peptides
7.
Front Neurosci ; 15: 752594, 2021.
Article in English | MEDLINE | ID: mdl-34803589

ABSTRACT

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by initial memory impairments that progress to dementia. In this sense, synaptic dysfunction and loss have been established as the pathological features that best correlate with the typical early cognitive decline in this disease. At the histopathological level, post mortem AD brains typically exhibit intraneuronal neurofibrillary tangles (NFTs) along with the accumulation of amyloid-beta (Abeta) peptides in the form of extracellular deposits. Specifically, the oligomeric soluble forms of Abeta are considered the most synaptotoxic species. In addition, neuritic plaques are Abeta deposits surrounded by activated microglia and astroglia cells together with abnormal swellings of neuronal processes named dystrophic neurites. These periplaque aberrant neurites are mostly presynaptic elements and represent the first pathological indicator of synaptic dysfunction. In terms of losing synaptic proteins, the hippocampus is one of the brain regions most affected in AD patients. In this work, we report an early decline in spatial memory, along with hippocampal synaptic changes, in an amyloidogenic APP/PS1 transgenic model. Quantitative electron microscopy revealed a spatial synaptotoxic pattern around neuritic plaques with significant loss of periplaque synaptic terminals, showing rising synapse loss close to the border, especially in larger plaques. Moreover, dystrophic presynapses were filled with autophagic vesicles in detriment of the presynaptic vesicular density, probably interfering with synaptic function at very early synaptopathological disease stages. Electron immunogold labeling showed that the periphery of amyloid plaques, and the associated dystrophic neurites, was enriched in Abeta oligomers supporting an extracellular location of the synaptotoxins. Finally, the incubation of primary neurons with soluble fractions derived from 6-month-old APP/PS1 hippocampus induced significant loss of synaptic proteins, but not neuronal death. Indeed, this preclinical transgenic model could serve to investigate therapies targeted at initial stages of synaptic dysfunction relevant to the prodromal and early AD.

8.
Glia ; 69(4): 997-1011, 2021 04.
Article in English | MEDLINE | ID: mdl-33283891

ABSTRACT

Reactive astrocytes and dystrophic neurites, most aberrant presynaptic elements, are found surrounding amyloid-ß plaques in Alzheimer's disease (AD). We have previously shown that reactive astrocytes enwrap, phagocytose, and degrade dystrophic synapses in the hippocampus of APP mice and AD patients, but affecting less than 7% of dystrophic neurites, suggesting reduced phagocytic capacity of astrocytes in AD. Here, we aimed to gain insight into the underlying mechanisms by analyzing the capacity of primary astrocyte cultures to phagocytose and degrade isolated synapses (synaptoneurosomes, SNs) from APP (containing dystrophic synapses and amyloid-ß peptides), Tau (containing AT8- and AT100-positive phosphorylated Tau) and WT (controls) mice. We found highly reduced phagocytic and degradative capacity of SNs-APP, but not AT8/AT100-positive SNs-Tau, as compared with SNs-WT. The reduced astrocyte phagocytic capacity was verified in hippocampus from 12-month-old APP mice, since only 1.60 ± 3.81% of peri-plaque astrocytes presented phagocytic structures. This low phagocytic capacity did not depend on microglia-mediated astrocyte reactivity, because removal of microglia from the primary astrocyte cultures abrogated the expression of microglia-dependent genes in astrocytes, but did not affect the phagocytic impairment induced by oligomeric amyloid-ß alone. Taken together, our data suggest that amyloid-ß, but not hyperphosphorylated Tau, directly impairs the capacity of astrocytes to clear the pathological accumulation of oligomeric amyloid-ß, as well as of peri-plaque dystrophic synapses containing amyloid-ß, perhaps by reducing the expression of phagocytosis receptors such as Mertk and Megf10, thus increasing neuronal damage in AD. Therefore, the potentiation or recovery of astrocytic phagocytosis may be a novel therapeutic avenue in AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Animals , Astrocytes , Disease Models, Animal , Humans , Membrane Proteins , Mice , Mice, Transgenic , Phagocytosis , Plaque, Amyloid , Synapses
9.
Int J Mol Sci ; 21(18)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32962164

ABSTRACT

Extracellular amyloid-beta deposition and intraneuronal Tau-laden neurofibrillary tangles are prime features of Alzheimer's disease (AD). The pathology of AD is very complex and still not fully understood, since different neural cell types are involved in the disease. Although neuronal function is clearly deteriorated in AD patients, recently, an increasing number of evidences have pointed towards glial cell dysfunction as one of the main causative phenomena implicated in AD pathogenesis. The complex disease pathology together with the lack of reliable disease models have precluded the development of effective therapies able to counteract disease progression. The discovery and implementation of human pluripotent stem cell technology represents an important opportunity in this field, as this system allows the generation of patient-derived cells to be used for disease modeling and therapeutic target identification and as a platform to be employed in drug discovery programs. In this review, we discuss the current studies using human pluripotent stem cells focused on AD, providing convincing evidences that this system is an excellent opportunity to advance in the comprehension of AD pathology, which will be translated to the development of the still missing effective therapies.


Subject(s)
Alzheimer Disease/metabolism , Cell Culture Techniques/methods , Drug Evaluation, Preclinical/methods , Induced Pluripotent Stem Cells/metabolism , Microglia/pathology , Neural Stem Cells/metabolism , Organoids/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Microglia/cytology , Oligodendroglia/metabolism , tau Proteins/metabolism
10.
Sci Rep ; 10(1): 14776, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32901091

ABSTRACT

In Alzheimer's disease (AD), and other tauopathies, microtubule destabilization compromises axonal and synaptic integrity contributing to neurodegeneration. These diseases are characterized by the intracellular accumulation of hyperphosphorylated tau leading to neurofibrillary pathology. AD brains also accumulate amyloid-beta (Aß) deposits. However, the effect of microtubule stabilizing agents on Aß pathology has not been assessed so far. Here we have evaluated the impact of the brain-penetrant microtubule-stabilizing agent Epothilone D (EpoD) in an amyloidogenic model of AD. Three-month-old APP/PS1 mice, before the pathology onset, were weekly injected with EpoD for 3 months. Treated mice showed significant decrease in the phospho-tau levels and, more interesting, in the intracellular and extracellular hippocampal Aß accumulation, including the soluble oligomeric forms. Moreover, a significant cognitive improvement and amelioration of the synaptic and neuritic pathology was found. Remarkably, EpoD exerted a neuroprotective effect on SOM-interneurons, a highly AD-vulnerable GABAergic subpopulation. Therefore, our results suggested that EpoD improved microtubule dynamics and axonal transport in an AD-like context, reducing tau and Aß levels and promoting neuronal and cognitive protection. These results underline the existence of a crosstalk between cytoskeleton pathology and the two major AD protein lesions. Therefore, microtubule stabilizers could be considered therapeutic agents to slow the progression of both tau and Aß pathology.


Subject(s)
Alzheimer Disease/complications , Cognition Disorders/prevention & control , Disease Models, Animal , Epothilones/pharmacology , Microtubules/chemistry , Tauopathies/prevention & control , Animals , Axonal Transport , Cognition Disorders/etiology , Cognition Disorders/pathology , Female , Humans , Male , Mice , Mice, Transgenic , Microtubules/drug effects , Neurons/metabolism , Neurons/pathology , Phenotype , Tauopathies/etiology , Tauopathies/pathology , Tubulin Modulators/pharmacology
12.
Brain Pathol ; 30(2): 345-363, 2020 03.
Article in English | MEDLINE | ID: mdl-31491047

ABSTRACT

Neuronal loss is the best neuropathological substrate that correlates with cortical atrophy and dementia in Alzheimer's disease (AD). Defective GABAergic neuronal functions may lead to cortical network hyperactivity and aberrant neuronal oscillations and in consequence, generate a detrimental alteration in memory processes. In this study, using immunohistochemical and stereological approaches, we report that the two major and non-overlapping groups of inhibitory interneurons (SOM-cells and PV-cells) displayed distinct vulnerability in the perirhinal cortex of APP/PS1 mice and AD patients. SOM-positive neurons were notably sensitive and exhibited a dramatic decrease in the perirhinal cortex of 6-month-old transgenic mice (57% and 61% in areas 36 and 35, respectively) and, most importantly, in AD patients (91% in Braak V-VI cases). In addition, this interneuron degenerative process seems to occur in parallel, and closely related, with the progression of the amyloid pathology. However, the population expressing PV was unaffected in APP/PS1 mice while in AD brains suffered a pronounced and significant loss (69%). As a key component of cortico-hippocampal networks, the perirhinal cortex plays an important role in memory processes, especially in familiarity-based memory recognition. Therefore, disrupted functional connectivity of this cortical region, as a result of the early SOM and PV neurodegeneration, might contribute to the altered brain rhythms and cognitive failures observed in the initial clinical phase of AD patients. Finally, these findings highlight the failure of amyloidogenic AD models to fully recapitulate the selective neuronal degeneration occurring in humans.


Subject(s)
Alzheimer Disease/pathology , GABAergic Neurons/pathology , Interneurons/pathology , Perirhinal Cortex/pathology , Aged , Aged, 80 and over , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Middle Aged
13.
Acta Neuropathol ; 138(2): 251-273, 2019 08.
Article in English | MEDLINE | ID: mdl-31006066

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease in which the formation of extracellular aggregates of amyloid beta (Aß) peptide, fibrillary tangles of intraneuronal tau and microglial activation are major pathological hallmarks. One of the key molecules involved in microglial activation is galectin-3 (gal3), and we demonstrate here for the first time a key role of gal3 in AD pathology. Gal3 was highly upregulated in the brains of AD patients and 5xFAD (familial Alzheimer's disease) mice and found specifically expressed in microglia associated with Aß plaques. Single-nucleotide polymorphisms in the LGALS3 gene, which encodes gal3, were associated with an increased risk of AD. Gal3 deletion in 5xFAD mice attenuated microglia-associated immune responses, particularly those associated with TLR and TREM2/DAP12 signaling. In vitro data revealed that gal3 was required to fully activate microglia in response to fibrillar Aß. Gal3 deletion decreased the Aß burden in 5xFAD mice and improved cognitive behavior. Interestingly, a single intrahippocampal injection of gal3 along with Aß monomers in WT mice was sufficient to induce the formation of long-lasting (2 months) insoluble Aß aggregates, which were absent when gal3 was lacking. High-resolution microscopy (stochastic optical reconstruction microscopy) demonstrated close colocalization of gal3 and TREM2 in microglial processes, and a direct interaction was shown by a fluorescence anisotropy assay involving the gal3 carbohydrate recognition domain. Furthermore, gal3 was shown to stimulate TREM2-DAP12 signaling in a reporter cell line. Overall, our data support the view that gal3 inhibition may be a potential pharmacological approach to counteract AD.


Subject(s)
Alzheimer Disease/immunology , Galectin 3/physiology , Membrane Glycoproteins/physiology , Microglia/metabolism , Receptors, Immunologic/physiology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid/immunology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Animals , Cells, Cultured , Disease Models, Animal , Female , Galectin 3/toxicity , Genetic Predisposition to Disease , Genome-Wide Association Study , Hippocampus/drug effects , Hippocampus/pathology , Humans , Inflammation , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microglia/immunology , Molecular Targeted Therapy , Polymorphism, Single Nucleotide , Protein Aggregation, Pathological
14.
Front Cell Neurosci ; 12: 421, 2018.
Article in English | MEDLINE | ID: mdl-30487735

ABSTRACT

Microglial cells are crucial players in the pathological process of neurodegenerative diseases, such as Alzheimer's disease (AD). Microglial response in AD has been principally studied in relation to amyloid-beta pathology but, comparatively, little is known about inflammatory processes associated to tau pathology. In the hippocampus of AD patients, where tau pathology is more prominent than amyloid-beta pathology, a microglial degenerative process has been reported. In this work, we have directly compared the microglial response in two different transgenic tau mouse models: ThyTau22 and P301S. Surprisingly, these two models showed important differences in the microglial profile and tau pathology. Where ThyTau22 hippocampus manifested mild microglial activation, P301S mice exhibited a strong microglial response in parallel with high phospho-tau accumulation. This differential phospho-tau expression could account for the different microglial response in these two tau strains. However, soluble (S1) fractions from ThyTau22 hippocampus presented relatively high content of soluble phospho-tau (AT8-positive) and were highly toxic for microglial cells in vitro, whereas the correspondent S1 fractions from P301S mice displayed low soluble phospho-tau levels and were not toxic for microglial cells. Therefore, not only the expression levels but the aggregation of phospho-tau should differ between both models. In fact, most of tau forms in the P301S mice were aggregated and, in consequence, forming insoluble tau species. We conclude that different factors as tau mutations, accumulation, phosphorylation, and/or aggregation could account for the distinct microglial responses observed in these two tau models. For this reason, deciphering the molecular nature of toxic tau species for microglial cells might be a promising therapeutic approach in order to restore the deficient immunological protection observed in AD hippocampus.

15.
Front Aging Neurosci ; 10: 140, 2018.
Article in English | MEDLINE | ID: mdl-29867449

ABSTRACT

Microglial activation has been considered a crucial player in the pathological process of multiple human neurodegenerative diseases. In some of these pathologies, such as Amyotrophic Lateral Sclerosis or Multiple Sclerosis, the immune system and microglial cells (as part of the cerebral immunity) play a central role. In other degenerative processes, such as Alzheimer's disease (AD), the role of microglia is far to be elucidated. In this "mini-review" article, we briefly highlight our recent data comparing the microglial response between amyloidogenic transgenic models, such as APP/PS1 and AD patients. Since the AD pathology could display regional heterogeneity, we focus our work at the hippocampal formation. In APP based models a prominent microglial response is triggered around amyloid-beta (Aß) plaques. These strongly activated microglial cells could drive the AD pathology and, in consequence, could be implicated in the neurodegenerative process observed in models. On the contrary, the microglial response in human samples is, at least, partial or attenuated. This patent difference could simply reflect the lower and probably slower Aß production observed in human hippocampal samples, in comparison with models, or could reflect the consequence of a chronic long-standing microglial activation. Beside this differential response, we also observed microglial degeneration in Braak V-VI individuals that, indeed, could compromise their normal role of surveying the brain environment and respond to the damage. This microglial degeneration, particularly relevant at the dentate gyrus, might be mediated by the accumulation of toxic soluble phospho-tau species. The consequences of this probably deficient immunological protection, observed in AD patients, are unknown.

16.
Glia ; 66(3): 637-653, 2018 03.
Article in English | MEDLINE | ID: mdl-29178139

ABSTRACT

Reactive astrogliosis, a complex process characterized by cell hypertrophy and upregulation of components of intermediate filaments, is a common feature in brains of Alzheimer's patients. Reactive astrocytes are found in close association with neuritic plaques; however, the precise role of these glial cells in disease pathogenesis is unknown. In this study, using immunohistochemical techniques and light and electron microscopy, we report that plaque-associated reactive astrocytes enwrap, engulf and may digest presynaptic dystrophies in the hippocampus of amyloid precursor protein/presenilin-1 (APP/PS1) mice. Microglia, the brain phagocytic population, was apparently not engaged in this clearance. Phagocytic reactive astrocytes were present in 35% and 67% of amyloid plaques at 6 and 12 months of age, respectively. The proportion of engulfed dystrophic neurites was low, around 7% of total dystrophies around plaques at both ages. This fact, along with the accumulation of dystrophic neurites during disease course, suggests that the efficiency of the astrocyte phagocytic process might be limited or impaired. Reactive astrocytes surrounding and engulfing dystrophic neurites were also detected in the hippocampus of Alzheimer's patients by confocal and ultrastructural analysis. We posit that the phagocytic activity of reactive astrocytes might contribute to clear dysfunctional synapses or synaptic debris, thereby restoring impaired neural circuits and reducing the inflammatory impact of damaged neuronal parts and/or limiting the amyloid pathology. Therefore, potentiation of the phagocytic properties of reactive astrocytes may represent a potential therapy in Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Astrocytes/metabolism , Phagocytosis/physiology , Synapses/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Astrocytes/pathology , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , Synapses/pathology
17.
Sci Rep ; 7(1): 10085, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855626

ABSTRACT

Alzheimer's disease is a major neurodegenerative disorder that leads to severe cognitive deficits in the elderly population. Over the past two decades, multiple studies have focused on elucidating the causative factors underlying memory defects in Alzheimer's patients. In this regard, new evidence linking Alzheimer's disease-related pathology and neuronal stem cells suggests that hippocampal neurogenesis impairment is an important factor underlying these cognitive deficits. However, because of conflicting results, the impact of Aß pathology on neurogenesis/gliogenesis remains unclear. Here, we investigated the effect of Aß on neuronal and glial proliferation by using an APP/PS1 transgenic model and in vitro assays. Specifically, we showed that neurogenesis is affected early in the APP/PS1 hippocampus, as evidenced by a significant decrease in the proliferative activity due to a reduced number of both radial glia-like neural stem cells (type-1 cells) and intermediate progenitor cells (type-2 cells). Moreover, we demonstrated that soluble Aß from APP/PS1 mice impairs neuronal cell proliferation using neurosphere cultures. On the other hand, we showed that oligomeric Aß stimulates microglial proliferation, whereas no effect was observed on astrocytes. These findings indicate that Aß has a differential effect on hippocampal proliferative cells by inhibiting neuronal proliferation and triggering the formation of microglial cells.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/pharmacology , Hippocampus/drug effects , Neural Stem Cells/drug effects , Neuroglia/drug effects , Neurons/drug effects , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Doublecortin Domain Proteins , Gene Expression , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Mice , Mice, Transgenic , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurogenesis/genetics , Neuroglia/metabolism , Neuroglia/pathology , Neurons/metabolism , Neurons/pathology , Neuropeptides/genetics , Neuropeptides/metabolism , Organ Specificity , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology
18.
Front Mol Neurosci ; 10: 278, 2017.
Article in English | MEDLINE | ID: mdl-28928633

ABSTRACT

Lysophosphatidic acid (LPA) is an extracellular lipid mediator that regulates nervous system development and functions acting through G protein-coupled receptors (GPCRs). Here we explore the crosstalk between LPA1 receptor and glutamatergic transmission by examining expression of glutaminase (GA) isoforms in different brain areas isolated from wild-type (WT) and KOLPA1 mice. Silencing of LPA1 receptor induced a severe down-regulation of Gls-encoded long glutaminase protein variant (KGA) (glutaminase gene encoding the kidney-type isoforms, GLS) protein expression in several brain regions, particularly in brain cortex and hippocampus. Immunohistochemical assessment of protein levels for the second type of glutaminase (GA) isoform, glutaminase gene encoding the liver-type isoforms (GLS2), did not detect substantial differences with regard to WT animals. The regional mRNA levels of GLS were determined by real time RT-PCR and did not show significant variations, except for prefrontal and motor cortex values which clearly diminished in KO mice. Total GA activity was also significantly reduced in prefrontal and motor cortex, but remained essentially unchanged in the hippocampus and rest of brain regions examined, suggesting activation of genetic compensatory mechanisms and/or post-translational modifications to compensate for KGA protein deficit. Remarkably, Golgi staining of hippocampal regions showed an altered morphology of glutamatergic pyramidal cells dendritic spines towards a less mature filopodia-like phenotype, as compared with WT littermates. This structural change correlated with a strong decrease of active matrix-metalloproteinase (MMP) 9 in cerebral cortex and hippocampus of KOLPA1 mice. Taken together, these results demonstrate that LPA signaling through LPA1 influence expression of the main isoenzyme of glutamate biosynthesis with strong repercussions on dendritic spines maturation, which may partially explain the cognitive and learning defects previously reported for this colony of KOLPA1 mice.

19.
Acta Neuropathol ; 132(6): 897-916, 2016 12.
Article in English | MEDLINE | ID: mdl-27743026

ABSTRACT

The role of microglial cells in the development and progression of Alzheimer's disease (AD) has not been elucidated. Here, we demonstrated the existence of a weak microglial response in human AD hippocampus which is in contrast to the massive microglial activation observed in APP-based models. Most importantly, microglial cells displayed a prominent degenerative profile (dentate gyrus > CA3 > CA1 > parahippocampal gyrus), including fragmented and dystrophic processes with spheroids, a reduced numerical density, and a significant decrease in the area of surveillance ("microglial domain"). Consequently, there was a substantial decline in the area covered by microglia which may compromise immune protection and, therefore, neuronal survival. In vitro experiments demonstrated that soluble fractions (extracellular/cytosolic) from AD hippocampi were toxic for microglial cells. This toxicity was abolished by AT8 and/or AT100 immunodepletion, validating that soluble phospho-tau was the toxic agent. These results were reproduced using soluble fractions from phospho-tau-positive Thy-tau22 hippocampi. Cultured microglial cells were not viable following phagocytosis of SH-SY5Y cells expressing soluble intracellular phospho-tau. Because the phagocytic capacity of microglial cells is highly induced by apoptotic signals in the affected neurons, we postulate that accumulation of intraneuronal soluble phospho-tau might trigger microglial degeneration in the AD hippocampus. This microglial vulnerability in AD pathology provides new insights into the immunological mechanisms underlying the disease progression and highlights the need to improve or develop new animal models, as the current models do not mimic the microglial pathology observed in the hippocampus of AD patients.


Subject(s)
Alzheimer Disease/pathology , Hippocampus/pathology , Microglia/metabolism , tau Proteins/metabolism , Adult , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Apoptosis/genetics , Calcium-Binding Proteins , Cells, Cultured , DNA-Binding Proteins/metabolism , Disease Progression , Female , Gene Expression Regulation/genetics , Humans , Leukocyte Common Antigens/metabolism , Male , Mice , Mice, Transgenic , Microfilament Proteins , Microglia/pathology , Middle Aged , Presenilin-1/genetics , Presenilin-1/metabolism , Receptors, Purinergic P2Y12/metabolism
20.
J Alzheimers Dis ; 42(2): 521-41, 2014.
Article in English | MEDLINE | ID: mdl-24927710

ABSTRACT

The progressive cognitive decline leading to dementia in Alzheimer's disease (AD) patients is the consequence of a severe loss of synapses and neurons affecting particular cell subpopulations in selected brain areas, with the subiculum being one of the earliest regions displaying severe atrophy and pathology. The lack of significant neuronal loss in most AD models is, in fact, the major shortcoming for the preclinical evaluation of drugs that could have greater potential in patients to alleviate or prevent this disease. In this study, using immunohistochemical and stereological approaches, we have analyzed the histopathological events in the subiculum of AßPP751SwedLondon/PS1M146L mice, a transgenic model that displays neuronal vulnerability at early ages in hippocampus and entorhinal cortex. Our results indicate that the subiculum is the earliest affected region in the hippocampus, showing a selective early loss of both principal neurons (28%) and SOM-positive interneurons (69%). In addition, our data demonstrate the existence of an early axonal and synaptic pathology, which may represent the beginning of the synaptic disruption and loss. These neurodegenerative processes occur in parallel, and closely related, with the onset and accelerated progression of the extracellular amyloid-ß deposition, thus suggesting plaques as major contributors of neuronal/axonal damage. Data reported here indicate that this AD model displays a selective AD-like neurodegenerative phenotype in highly vulnerable regions, including the subiculum, and therefore can be a very useful model for testing the therapeutic ability of potential compounds to protect neurons and ameliorate disease symptoms.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Neurons/pathology , Presynaptic Terminals/pathology , Age Factors , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Male , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Mutation/genetics , Nerve Tissue Proteins/metabolism , Neurotransmitter Agents/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...