Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(3): e202301645, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38235946

ABSTRACT

This study examines the potential of herniarin from tarragon, as an agent with multifaceted effects on bladder cancer cells and investigates herniarin's impact on cell viability, migration, cell cycle regulation, apoptosis induction, and Erk signaling pathways in bladder cancer cell lines, including RT-112 (grade 1, non-invasive), HTB9 (grade 2, invasive), and HT1376 (grade 3, invasive), through comprehensive in vitro experiments. The compound causes cell cycle arrest at distinct phases in different cell lines: G1/S arrest in RT112 cells, G2/M arrest in HTB9 cells, and S phase arrest in HT1376 cells. Furthermore, herniarin induces caspase-mediated apoptosis in various cell lines and simultaneously modulates protein levels of apoptotic and anti-apoptotic proteins, indicating its potential as a therapeutic agent. Herniarin's influence also extends to Erk signaling, a crucial pathway that regulates cell growth and differentiation. In conclusion, this study reveals herniarin's potential as a versatile agent in the treatment of bladder cancer.


Subject(s)
Apoptosis , Umbelliferones , Urinary Bladder Neoplasms , Humans , Cell Survival , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Cell Cycle , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Cell Proliferation , Cell Cycle Checkpoints
2.
Theriogenology ; 158: 196-206, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32966945

ABSTRACT

p97/valosin-containing protein (VCP) is expressed in many cells and plays critical functions in a broad range of diverse cellular processes. Because it is expressed in the mouse testes, predominantly in Sertoli cells, and is known to play a critical role in autophagy and apoptosis in different cell types, we set out to investigate its function in autophagosome maturation, apoptosis and cell cycle arrest in a mouse Sertoli cell line. To study the mechanism of p97/VCP action, p97/VCP siRNA and a specific p97/VCP inhibitor, N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ), were used in the mouse 15P1 Sertoli cell line. Loss of p97/VCP activity due to DBeQ exposure and silencing of p97/VCP (siVCP) expression results in autophagosome (LC3 and p62) accumulation in the cytoplasm of Sertoli cells. The coexpression of autophagosomal and lysosomal markers (LAMP1 and LAMP2) was reduced in cells in which p97/VCP expression had been inactivated. To better understand in which step of autophagy p97/VCP functions, the interaction between autophagosomal and autolysosomal markers was studied by coimmunoprecipitation and colocalization experiments. The interaction between autophagosomal markers and lysosomal markers decreased in siVCP-expressing and DBeQ-exposed cells. Moreover, the expression of siVCP and DBeQ exposure caused cytoplasmic vacuolation, induced caspase 3-7-mediated cell death and decreased cell cycle progression in mouse Sertoli cells. Taken together, the results show that p97/VCP is essential for autophagosome maturation and cell survival in mouse Sertoli cells. When these functions are prevented, impaired autophagy and apoptosis may have a detrimental effect on germ cells and cause male infertility.


Subject(s)
Autophagosomes , Sertoli Cells , Adenosine Triphosphatases/metabolism , Animals , Apoptosis , Autophagosomes/metabolism , Cell Cycle Checkpoints , Cell Cycle Proteins/metabolism , Male , Mice , Sertoli Cells/metabolism , Valosin Containing Protein/metabolism
3.
Placenta ; 67: 45-53, 2018 07.
Article in English | MEDLINE | ID: mdl-29941173

ABSTRACT

INTRODUCTION: Autophagy increases in placenta-related obstetrical diseases such as preeclampsia and intrauterine growth retardation but the regulation of autophagy by ubiquitin proteasome pathway (UPP) proteins, p97/Valosin containing protein (VCP) and ubiquitin (Ub) have not been previuosly studied in preeclampsia. The objective of this study is to investigate the expression of UPP (p97/VCP and Ub), autophagosomal (p62 and LC3) and autolysosomal proteins (Lamp1 and Lamp2) in the normal and preeclamptic human placentas and to explore the regulatory mechanism of these proteins in autophagic pathway. MATERIAL AND METHODS: Different portions of normal term placentas (n = 20) and preeclamptic placentas (n = 10) were snap-frozen in liquid nitrogen for Western blotting and coimmunoprecipitation and others were fixed-embedded in paraffin for immunohistochemistry. Colocalization and coimmunoprecipitation experiments were done for the detection of interaction between p97/VCP and autophagic proteins. RESULTS: Compared with normal placentas, expression of p97/VCP was significantly reduced; however accumulation of ubiquitinlated proteins were significantly increased in preeclamptic placentas. The expression of autophagosomal proteins (LC3-II and p62) were significantly increased and no significant alterations of the expression of autolysosomal proteins were observed in preeclamptic placentas. Additionally, p97/VCP was found to colocalized and interact with autophagosomal and autolysosomal markers in normal and preeclamptic placentas. Autophagosome maturation diminished and autophagosomes had decreased localization with lysosomal markers in preeclamptic human placentas. CONCLUSION: Decreased expression of p97/VCP and increased expression of Ub in preeclampsia might be related to impaired autophagy and pathophysiology of preeclampsia. Therefore, our study highlights an important potential relationship between p97/VCP and autophagic proteins in preeclampsia.


Subject(s)
Autophagy/physiology , Placenta/metabolism , Placenta/pathology , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Valosin Containing Protein/metabolism , Adult , Blotting, Western , Case-Control Studies , Female , Humans , Immunohistochemistry , Immunoprecipitation , Pregnancy , Term Birth/physiology , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...