Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters










Publication year range
1.
Acta Biomater ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942189

ABSTRACT

A wide variety of microorganisms have been closely linked to metal corrosion in the form of adherent surface biofilms. Biofilms allow the development and maintenance of locally corrosive environments and/or permit direct corrosion including pitting corrosion. The presence of numerous genetically distinct microorganisms in the oral environment poses a threat to the integrity and durability of the surface of metallic prostheses and implants used in routine dentistry. However, the association between oral microorganisms and specific corrosion mechanisms is not clear. It is of practical importance to understand how microbial corrosion occurs and the associated risks to metallic materials in the oral environment. This knowledge is also important for researchers and clinicians who are increasingly concerned about the biological activity of the released corrosion products. Accordingly, the main goal was to comprehensively review the current literature regarding oral microbiologically influenced corrosion (MIC) including characteristics of biofilms and of the oral environment, MIC mechanisms, corrosion behavior in the presence of oral microorganisms and potentially mitigating technologies. Findings included that oral MIC has been ascribed mostly to aggressive metabolites secreted during microbial metabolism (metabolite-mediated MIC). However, from a thermodynamic point of view, extracellular electron transfer mechanisms (EET-MIC) through pili or electron transfer compounds cannot be ruled out. Various MIC mitigating methods have been demonstrated to be effective in short term, but long term evaluations are necessary before clinical applications can be considered. Currently most in-vitro studies fail to simulate the complexity of intraoral physiological conditions which may either reduce or exacerbate corrosion risk, which must be addressed in future studies. STATEMENT OF SIGNIFICANCE: A thorough analysis on literature regarding oral MIC (microbiologically influenced corrosion) of biomedical metallic materials has been carried out, including characteristics of oral environment, MIC mechanisms, corrosion behaviors in the presence of typical oral microorganisms and potential mitigating methods (materials design and surface design). There is currently a lack of mechanistic understanding of oral MIC which is very important not only to corrosion researchers but also to dentists and clinicians. This paper discusses the significance of biofilms from a biocorrosion perspective and summarizes several aspects of MIC mechanisms which could be caused by oral microorganisms. Oral MIC has been closely associated with not only the materials research but also the dental/clinical research fields in this work.

3.
Bioelectrochemistry ; 157: 108650, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38286079

ABSTRACT

Microbiologically influenced corrosion (MIC) is a complicated process that happens ubiquitously and quietly in many fields. As a useful nutritional ingredient in microbial culture media, yeast extract (YE) is a routinely added in the MIC field. However, how the YE participated in MIC is not fully clarified. In the present work, the effect of YE on the growth of sulfate reducing prokaryotes (SRP) Desulfovibrio bizertensis SY-1 and corrosion behavior of X70 pipeline steel were studied. It was found that the weight loss of steel coupons in sterile media was doubled when YE was removed from culture media. However, in the SRP assays without YE the number of planktonic cells decreased, but the attachment of bacteria on steel surfaces was enhanced significantly. Besides, the corrosion rate of steel in SRP assays increased fourfold after removing YE from culture media. MIC was not determined for assays with planktonic SRP but only for biofilm assays. The results confirm the effect of YE on D. bizertensis SY-1 growth and also the inhibitory role of YE on MIC.


Subject(s)
Desulfovibrio , Steel , Corrosion , Biofilms , Sulfates , Plankton/microbiology , Culture Media
4.
Res Microbiol ; 175(1-2): 104150, 2024.
Article in English | MEDLINE | ID: mdl-37926348

ABSTRACT

Many acidophilic iron-oxidizing bacteria used in the mining industry for the bioleaching of sulfidic minerals are intolerant to high chloride concentrations, resulting in problems where chloride occurs in the deposit at high concentrations or only seawater is available. In search for strains tolerating such conditions a tetrathionate- and iron-oxidizing bacterium was isolated from a tailings-contaminated beach sample at Portman Bay, Cartagena-La Union mining district, Spain, in the presence of 20 g l-1 (0.34 M) sodium chloride. The isolate was able to form spores, did not grow in the absence of NaCl, and oxidized ferrous iron in the presence of up to 1.5 M (∼87 g l-1) NaCl. Genome sequencing based on a combination of Illumina and PacBio reads revealed two contigs, a circular bacterial chromosome of 5.2 Mbp and a plasmid of 90 kbp, respectively. The chromosome comprised seven different 16S rRNA genes. Submission of the chromosome to the Type (Strain) Genome Server (TYGS) without preselection of similar sequences revealed exclusively type strains of the genus Alicyclobacillus. In the TYGS analyses the respective most similar species were dependent on whether the final tree was derived from just 16S rRNA, from the genomes, or from the proteomes. Thus, TYGS analysis clearly showed that isolate SO9 represents a novel species of the genus Alicyclobacillus. In the presence of artificial seawater with almost 0.6 M chloride, the addition of Alicyclobacillus sp. SO9 improved copper dissolution from chalcopyrite (CuFeS2) compared to abiotic leaching without bacteria. The new isolate SO9, therefore, has potential for bioleaching at elevated chloride concentrations.


Subject(s)
Alicyclobacillus , Iron , Copper , Alicyclobacillus/genetics , Chlorides , Sodium Chloride , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Oxidation-Reduction , Phylogeny
5.
Microorganisms ; 11(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37764038

ABSTRACT

A microbiologically influenced corrosion (MIC) causes huge economic losses and serious environmental damage every year. The prevention and control measures for MIC mainly include physical, chemical, and biological methods. Among them, biocide application is the most cost-effective method. Although various biocides have their own advantages in preventing and treating MIC, most biocides have the problem of polluting the environment and increasing microorganism resistance. Therefore, it has stimulated the exploration of continuously developing new environmentally friendly and efficient biocides. In this review, the application advantages and research progress of various biocides used to prevent and control MIC are discussed. Also, this review provides a resource for the research and rational use of biocides regarding MIC mitigation and prevention.

6.
Microorganisms ; 11(8)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37630635

ABSTRACT

Microbially influenced concrete corrosion (MICC) causes substantial financial losses to modern societies. Concrete corrosion with various environmental factors has been studied extensively over several decades. With the enhancement of public awareness on the environmental and economic impacts of microbial corrosion, MICC draws increasingly public attention. In this review, the roles of various microbial communities on MICC and corresponding protective measures against MICC are described. Also, the current status and research methodology of MICC are discussed. Thus, this review aims at providing insight into MICC and its mechanisms as well as the development of protection possibilities.

8.
Appl Microbiol Biotechnol ; 106(21): 6933-6952, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36194263

ABSTRACT

Bioleaching of metal sulfides is performed by diverse microorganisms. The dissolution of metal sulfides occurs via two chemical pathways, either the thiosulfate or the polysulfide pathway. These are determined by the metal sulfides' mineralogy and their acid solubility. The microbial cell enables metal sulfide dissolution via oxidation of iron(II) ions and inorganic sulfur compounds. Thereby, the metal sulfide attacking agents iron(III) ions and protons are generated. Cells are active either in a planktonic state or attached to the mineral surface, forming biofilms. This review, as an update of the previous one (Vera et al., 2013a), summarizes some recent discoveries relevant to bioleaching microorganisms, contributing to a better understanding of their lifestyle. These comprise phylogeny, chemical pathways, surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, cell-cell communication, molecular biology, and biofilm lifestyle. Recent advances from genetic engineering applied to bioleaching microorganisms will allow in the future to better understand important aspects of their physiology, as well as to open new possibilities for synthetic biology applications of leaching microbial consortia. KEY POINTS: • Leaching of metal sulfides is strongly enhanced by microorganisms • Biofilm formation and extracellular polymer production influences bioleaching • Cell interactions in mixed bioleaching cultures are key for process optimization.


Subject(s)
Protons , Thiosulfates , Ferric Compounds , Metals/metabolism , Sulfides/metabolism , Iron/metabolism , Minerals , Sulfur/metabolism , Polymers , Ferrous Compounds
9.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35628373

ABSTRACT

Microbial cells secrete extracellular polymeric substances (EPS) to adhere to material surfaces, if they get in contact with solid materials such as metals. After phase equilibrium, microorganisms can adhere firmly to the metal surfaces causing metal dissolution and corrosion. Attachment and adhesion of microorganisms via EPS increase the possibility and the rate of metal corrosion. Many components of EPS are electrochemical and redox active, making them closely related to metal corrosion. Functional groups in EPS have specific adsorption ability, causing them to play a key role in biocorrosion. This review emphasizes EPS properties related to metal corrosion and protection and the underlying microbially influenced corrosion (MIC) mechanisms. Future perspectives regarding a comprehensive study of MIC mechanisms and green methodologies for corrosion protection are provided.


Subject(s)
Biofouling , Extracellular Polymeric Substance Matrix , Biofouling/prevention & control , Corrosion , Metals/chemistry , Oxidation-Reduction
10.
Microorganisms ; 10(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35630285

ABSTRACT

To study the abnormal failure of magnesium anodes for buried pipelines in marine engineering in the unique environment of mudflats, a strain of a sulfate-reducing prokaryote (SRP) was isolated from pipe-laying soil, and identified as Desulfovibrio sp. HQM3. Weight-loss test, electrochemical measurements, SEM, EDS, XRD, and CLSM techniques were used to study the effect of corrosion on the AZ31B magnesium alloy. Under the influence of SRP, the magnesium alloy corroded severely at rates up to 1.31 mm/year in the mudflat environment. SRP accelerated corrosion by 0.3mm/year. Pitting occurred on the samples in both abiotic and biotic systems. The pitting depth reached 163.47 µm in the biotic system after 14 days. The main composition of a petal-like corrosion product was Mg(OH)2. The results show that a mudflat environment can lead to an accelerated corrosion of magnesium alloys.

11.
Front Microbiol ; 13: 820052, 2022.
Article in English | MEDLINE | ID: mdl-35369491

ABSTRACT

Heap bioleaching, the solubilization of metal ions from metal sulfides by microbial oxidation, is often combined with solvent extraction (SX) and electrowinning to recover, e.g., copper from low-grade ores. After extraction, the leaching solution is recycled, but the entrained organic solvents may be toxic to the microorganisms. Here Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, and Sulfobacillus thermosulfidooxidans were selected to perform bioleaching of chalcopyrite waste rock in the presence of the SX reagent (2.5% v/v LIX984N in kerosene). Possibly inhibitory effects have been evaluated by copper extraction, bacterial activity, number of actively Fe(II)-oxidizing cells, and biofilm formation. Microcalorimetry, most probable number determination, and atomic force microscopy combined with epifluorescence microscopy were applied. The results show that 100 and 300 mg/L SX reagent could hardly inhibit At. ferrooxidans from oxidizing Fe2+, but they seriously interfered with the biofilm formation and the oxidization of sulfur, thereby hindering bioleaching. L. ferrooxidans was sensitive to 50 mg/L SX reagent, which inhibited its bioleaching completely. Sb. thermosulfidooxidans showed different metabolic preferences, if the concentration of the SX reagent differed. With 10 mg/L LIX984N Sb. thermosulfidooxidans preferred to oxidize Fe2+ and extracted the same amount of copper as the assay without LIX984N. With 50 mg/L extractant the bioleaching stopped, since Sb. thermosulfidooxidans preferred to oxidize reduced inorganic sulfur compounds.

12.
RSC Adv ; 12(4): 1968-1981, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35425265

ABSTRACT

One of the main mechanisms of bacterial decolorization and degradation of azo dyes is the use of biological enzymes to catalyze the breaking of azo bonds. This paper shows the expression and properties of a novel azo reductase (hybrid-cluster NAD(P)-dependent oxidoreductase, accession no. A0A1S1BVU5, named BVU5) from the bacterial flora DDMZ1 for degradation of azo dyes. The molecular weight of BVU5 is about 40.1 kDa, and it contains the prosthetic group flavin mononucleotide (FMN). It has the decolorization ability of 80.1 ± 2.5% within 3 min for a dye concentration of 20 mg L-1, and 53.5 ± 1.8% even for a dye concentration of 200 mg L-1 after 30 min. The optimum temperature of enzyme BVU5 is 30 °C and the optimum pH is 6. It is insensitive to salt concentration up to a salinity level of 10%. Furthermore, enzyme BVU5 has good tolerance toward some metal ions (2 mM) such as Mn2+, Ca2+, Mg2+ and Cu2+ and some organic solvents (20%) such as DMSO, methanol, isopentyl, ethylene glycol and N-hexane. However, the enzyme BVU5 has a low tolerance to high concentrations of denaturants. In particular, it is sensitive to the denaturants guanidine hydrochloride (GdmCl) (2 M) and urea (2 M). Analysis of the dye substrate specificity shows that enzyme BVU5 decolorizes most azo dyes, which is indicating that the enzyme is not strictly substrate specific, it is a functional enzyme for breaking the azo structure. Liquid chromatography/time-of-flight/mass spectrometry (LC-TOF-MS) revealed after the action of enzyme BVU5 that some intermediate products with relatively large molecular weights were produced; this illustrates a symmetric or an asymmetric rapid cleavage of the azo bonds by this enzyme. The potential degradation pathways and the enzyme-catalyzed degradation mechanism are deduced in the end of this paper. The results give insight into the potential of a rapid bio-pretreatment by enzyme BVU5 for processing azo dye wastewater.

13.
Bioresour Technol ; 352: 127114, 2022 May.
Article in English | MEDLINE | ID: mdl-35390482

ABSTRACT

The conventional biological ammonium removal process is challenged for lack of electron acceptors. A lab-scale integrated constructed wetland coupled with microbial fuel cells (CW-MFC) filling manganese ores (MO) and granular active charcoal (GAC) has been developed, named CW-CM. It enhanced the nitrogen removal two times over the control. A metagenomic-based study illustrated the functional genes and taxonomic groups related to N transformations, explored metabolic mechanisms of nitrogen and carbon sources, and then revealed some characteristics of the extracellular electron transfer (EET). Many nitrifying bacteria and autotrophic and heterotrophic denitrifiers were enriched in CW-CM. Furthermore, most nitrification and denitrification reactions except for the conversion of ammonium to hydroxylamine were significantly enhanced in CW-CM. Glycolysis and the TCA cycle were also improved. Overall, a novel anoxic ammonia removal process was achieved in the experimental group with no need of anammox functional bacteria and anammox key genes.


Subject(s)
Ammonium Compounds , Bioelectric Energy Sources , Bacteria/genetics , Bioreactors , Carbon , Charcoal , Denitrification , Manganese , Metagenomics , Nitrification , Nitrogen/analysis , Wastewater , Wetlands
14.
Materials (Basel) ; 15(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35329663

ABSTRACT

This study seeks prevent and alleviate the failure of magnesium alloy anodes in pipelines, which we suspect is a problem related to SRB. The electrochemical corrosion behaviour of two kinds of magnesium alloys, AZ31B and AZ63B, in 3.5 wt.% NaCl solution with sulphide or phosphide-the two main inorganic metabolites of sulphate-reducing bacteria-were studied by electrochemical tests combined with other characterisation methods such as scanning electron microscopy and X-ray diffraction. The results show that the corrosion film formed by inorganic metabolites of SRB's initial stage of corrosion (1-3 d) can lead to the corrosion of magnesium alloys. However, the loose and porous corrosion product film cannot protect the substrate effectively. The inorganic metabolites in the solution can accelerate the corrosion of the surface of magnesium alloy after the corrosion products have fallen off. This study provides a theoretical basis for alleviating the premature failure of magnesium alloy anodes and for corrosion protection in the future.

16.
J Hazard Mater ; 407: 124384, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33229265

ABSTRACT

Advanced nanotechnologies for efficient arsenic decontamination remain largely underdeveloped. The most abundant inorganic arsenic species are neutrally-charged arsenate, As(III), and negatively-charged arsenite, As(V). Compared with As(V), As(III) is 60 times more toxic and more difficult to remove due to high mobility. Herein, an electrochemical filtration system was rationally designed for one-step As(III) decontamination. The key to this technology is a functional electroactive carbon nanotube (CNT) filter functionalized with sea urchin-like FeOOH. With the assistance of electric field, CNT-FeOOH anodic filter can in situ transform As(III) to less toxic As(V) while passing through. Then, as-produced As(V) could be effectively sequestrated by FeOOH. The sufficient exposed sorption sites, flow-through design, and filter's electrochemical reactivity synergistically guaranteed a rapid arsenic removal kinetic. The underlying working mechanism was unveiled based on systematic experimental investigations and theoretical calculations. The system efficacy can be adapted across a wide pH range and environmental matrixes. Exhausted CNT-FeOOH filters could be effectively regenerated by chemical washing with diluted NaOH solution. Outcomes of the present study are dedicated to provide a straightforward and effective strategy by integrating electrochemistry, nanotechnology, and membrane separation for the removal of arsenic and other similar heavy metals from water bodies.

17.
Front Microbiol ; 11: 1802, 2020.
Article in English | MEDLINE | ID: mdl-32849411

ABSTRACT

A novel strain of an iron- and sulfur-oxidizing bacterium was isolated from a natural biotope at Kashen copper ore (Martakert Province, Republic of Artsakh). The strain is able to grow and oxidize ferrous ions in the range of pH 1.4-2.6 with optimal pH 2.0. The optimal temperature for growth is 35°C. Acidithiobacillus sp. Ksh has shown the highest activity for pyrite oxidation among other strains. It also demonstrated high activity in oxidation for copper and copper-gold bearing ores (Armenia). The isolate Acidithiobacillus sp. Ksh was identified as Acidithiobacillus ferrooxidans based on phylogenetic and physiological studies. Comparative studies of EPS production by cells grown on ferrous ions or pyrite were carried out. The chemical composition of capsular and colloidal EPS produced by Acidithiobacillus (At.) ferrooxidans Ksh were revealed to be proteins and carbohydrates. Exosaccharide produced by At. ferrooxidans Ksh is present mainly as polysaccharide in contrast to Leptospirillum (L.) ferriphilum CC, which is oligosaccharide. The structural difference of colloidal particles of these polysaccharides was due to the degree of hydration of the saccharide molecules.

18.
Sci Data ; 7(1): 215, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32636389

ABSTRACT

Society's demand for metals is ever increasing while stocks of high-grade minerals are being depleted. Biomining, for example of chalcopyrite for copper recovery, is a more sustainable biotechnological process that exploits the capacity of acidophilic microbes to catalyze solid metal sulfide dissolution to soluble metal sulfates. A key early stage in biomining is cell attachment and biofilm formation on the mineral surface that results in elevated mineral oxidation rates. Industrial biomining of chalcopyrite is typically carried out in large scale heaps that suffer from the downsides of slow and poor metal recoveries. In an effort to mitigate these drawbacks, this study investigated planktonic and biofilm cells of acidophilic (optimal growth pH < 3) biomining bacteria. RNA and proteins were extracted, and high throughput "omics" performed from a total of 80 biomining experiments. In addition, micrographs of biofilm formation on the chalcopyrite mineral surface over time were generated from eight separate experiments. The dataset generated in this project will be of great use to microbiologists, biotechnologists, and industrial researchers.


Subject(s)
Bacteria/genetics , Biofilms/growth & development , Metals/isolation & purification , Systems Biology , Acids/chemistry , Bacterial Proteins/genetics , Copper/isolation & purification , RNA, Bacterial/genetics
19.
Environ Sci Technol ; 54(9): 5913-5921, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32271550

ABSTRACT

Gold (Au) has been considered catalytically inert for decades, but recent reports have described the ability of Au nanoparticles to catalyze H2O2 decomposition in the Haber-Weiss cycle. Herein, the design and demonstration of a flow-through electro-Fenton system based on an electrochemical carbon nanotube (CNT) filter functionalized with atomically precise Au nanoclusters (AuNCs) is described. The functionality of the device was then tested for its ability to catalyze antibiotic tetracycline degradation. In the functional filters, the Au core of AuNCs served as a high-performance Fenton catalyst; while the AuNCs ligand shells enabled CNT dispersion in aqueous solution for easy processing. The hybrid filter enabled in situ H2O2 production and catalyzed the subsequent H2O2 decomposition to HO·. The catalytic function of AuNCs lies in their ability to undergo redox cycling of Au+/Au0 under an electric field. The atomically precise AuNCs catalysts demonstrated superior catalytic activity to larger nanoparticles; while the flow-through design provided convection-enhanced mass transport, which yielded a superior performance compared to a conventional batch reactor. The adsorption behavior and decomposition pathway of H2O2 on the filter surfaces were simulated by density functional theory calculations. The research outcomes provided atomic-level mechanistic insights into the Au-mediated Fenton reaction.


Subject(s)
Gold , Metal Nanoparticles , Catalysis , Hydrogen Peroxide , Oxidation-Reduction
20.
Extremophiles ; 24(3): 365, 2020 05.
Article in English | MEDLINE | ID: mdl-32291524

ABSTRACT

In the original publication the section heading "Classification of microorganisms" appearing above the sub-section "Air and liquid circulation in the heap" in page four is incorrect. The correct section heading should be read as "Results and discussion".

SELECTION OF CITATIONS
SEARCH DETAIL
...