Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 653: 123889, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38346605

ABSTRACT

Breast cancer (BC) remains a significant health burden worldwide, necessitating the development of innovative therapeutic strategies. The B-cell lymphoma 2 (Bcl-2) family proteins, Bcl-2 and Bax, play a crucial role in regulating apoptosis and thus are promising targets for BC therapy. We focus on the recent advancements in novel formulations that specifically target Bcl-2/Bax pathway to combat BC. It provides an overview on biological functions of Bcl-2/Bax in apoptosis regulation, emphasizing their significance in pathogenesis and progression of the disease while covering the numerous therapeutic approaches aimed at modulating the Bcl-2/Bax pathway, including small-molecule inhibitors, peptides, gene-based therapies and other repurposed drugs harboured onto cutting-edge technologies and nanocarrier systems employed to enhance the targeted delivery of Bcl-2/Bax inhibitors tumor cells. These advanced formulations aim to improve therapeutic efficacy, minimize off-target effects, and overcome drug resistance, offering promising prospects in its treatment. In conclusion, it illuminates the diverse and evolving landscape of novel formulations as an essential armament in targeting these proteins while bridging and unravelling the obscurity of Bcl-2/Bax pathway-targeted drug delivery systems which are presently in their nascent stages of exploration for BC therapy which can benefit researchers, clinicians, and pharmaceutical scientists.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Proto-Oncogene Proteins c-bcl-2 , bcl-2-Associated X Protein/pharmacology , Breast Neoplasms/pathology , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
2.
J Biomol Struct Dyn ; : 1-19, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38356135

ABSTRACT

Cytochrome P450 1B1, a tumor-specific overexpressed enzyme, significantly impairs the pharmacokinetics of several commonly used anticancer drugs including docetaxel, paclitaxel and cisplatin, leading to the problem of resistance to these drugs. Currently, there is no CYP1B1 inhibition-based adjuvant therapy available to treat this resistance problem. Hence, in the current study, exhaustive in-silico studies including scaffold hopping followed by molecular docking, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular dynamics and free energy perturbation studies were carried out to identify potent and selective CYP1B1 inhibitors. Initially, scaffold hopping analysis was performed against a well-reported potent and selective CYP1B1 inhibitor (i.e. compound 3n). A total of 200 scaffolds were identified along with their shape and field similarity scores. The top three scaffolds were further selected on the basis of these scores and their synthesis feasibility to design some potent and selective CYP1B1 inhibitors using the aforementioned in-silico techniques. Designed molecules were further synthesized to evaluate their CYP1B1 inhibitory activity and docetaxel resistance reversal potential against CYP1B1 overexpressed drug resistance MCF-7 cell line. In-vitro results indicated that compounds 2a, 2c and 2d manifested IC50 values for CYP1B1 ranging from 0.075, 0.092 to 0.088 µM with at least 10-fold selectivity. At low micromolar concentrations, compounds 1e, 1f, 2a and 2d exhibited promising cytotoxic effects in the docetaxel-resistant CYP1B1 overexpressed MCF-7 cell line. In particular, compound 2a is most effective in reversing the resistance with IC50 of 29.0 ± 3.6 µM. All of these discoveries could pave the way for the development of adjuvant therapy capable of overcoming CYP1B1-mediated resistance.Communicated by Ramaswamy H. Sarma.

3.
Int J Pharm ; 651: 123787, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38184023

ABSTRACT

Targeted drug delivery is an advanced approach for active targeting of tumor that can enhance the concentration of the drug at the site of action and reduce the off-target toxicity and non-specific effects of the drug. Folate receptors (FR) are membrane-bound surface proteins, over-expressed in numerous solid tumors, folate and folate conjugates bind to FR with higher affinity. In the present investigation, we fabricated Folic acid (FA) decorated Palbociclib loaded lipid-polymer hybrid nanoparticles (FA-PLPHNPs) using quality by design (QbD) approach and evaluated its anti-cancer activity in folate receptor-positive breast cancer cell lines. 1HNMR, ATR-FTIR spectroscopic techniques confirmed the formation of DSPE-PEG-FA ligand. The optimized FA-PLPHNPs formulation exhibited 143.36 ± 5.24 nm, 0.172 ± 0.004, -16.84 ± 0.27 mV, and 93.12 ± 0.43 % of particle size, PDI, zeta potential and % entrapment efficiency, respectively. The FA-PLPHNPs exhibited an approximately 9, 11-fold reduction in IC50 values than free Palbociclib in MCF-7 and MDA-MB-231 cells at 48 h. The role of FA in targeting breast cancer was studied by means of a receptor-blocking assay, and concluded that FA-PLPHNPs were internalized into MCF-7 and MDA-MB-231 cells by folate receptor-mediated endocytosis. FA-PLPHNPs showed higher anti-cancer efficiency and caused enhanced reactive oxygen species generation, apoptosis (Acridine orange/ ethidium bromide dual staining and Annexin V/PI staining), reduced cell migration, and colony formation. Thus, the fabricated Palbociclib-loaded FA-conjugated lipid polymer hybrid nanoparticles could act as a potential nanocarrier for the treatment of breast cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Nanoparticles , Humans , Female , Polymers/chemistry , Breast Neoplasms/drug therapy , Folic Acid/chemistry , Drug Delivery Systems/methods , Apoptosis , Nanoparticles/chemistry , Lipids/pharmacology , Cell Line, Tumor , Drug Carriers/chemistry , Antineoplastic Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...