ABSTRACT
Gallbladder cancer (GBC) is a rare pathology in Western countries. However, it constitutes a relevant health problem in Asia and Latin America, with a high mortality in middle-aged Chilean women. The limited therapeutic options for GBC require the identification of targetable proteins with prognostic value for improving clinical management support. We evaluated the expression of targetable proteins, including three epithelial tumor markers, four proteins associated with multidrug and apoptosis resistance, and eleven immunological markers in 241 primary gallbladder adenocarcinomas. We investigated correlations between tumor marker expression, the primary tumor staging, and GBC patients' survival using automated immunohistochemistry, a semi-automatic method for image analysis, univariate and multivariate statistical analyses, and machine learning algorithms. Our data show a significant association between the expression of MRP2 (p = 0.0028), CXCR4 (p = 0.0423), and PD-L1 (p = 0.0264), and a better prognosis for patients with late-stage primary tumors. The expression of the MRP2/CXCR4/PD-L1 cluster of markers discriminates among short-, medium-, and long-term patient survival, with an ROC of significant prognostic value (AUC = 0.85, p = 0.0012). Moreover, a high MRP2/CXCR4/PD-L1 co-expression is associated with increased survival time (30 vs. 6 months, p = 0.0025) in GBC patients, regardless of tumor stage. Hence, our results suggest that the MRP2/CXCR4/PD-L1 cluster could potentially be a prognostic marker for GBC.
ABSTRACT
Gallbladder cancer (GBC) is commonly diagnosed at late stages when conventional treatments achieve only modest clinical benefit. Therefore, effective treatments for advanced GBC are needed. In this context, the administration of T cells genetically engineered with chimeric antigen receptors (CAR) has shown remarkable results in hematological cancers and is being extensively studied for solid tumors. Interestingly, GBC tumors express canonical tumor-associated antigens, including the carcinoembryonic antigen (CEA). However, the potential of CEA as a relevant antigen in GBC to be targeted by CAR-T cell-based immunotherapy has not been addressed. Here we show that CEA was expressed in 88% of GBC tumors, with higher levels associated with advanced disease stages. CAR-T cells specifically recognized plate-bound CEA as evidenced by up-regulation of 4-1BB, CD69 and PD-1, and production of effector cytokines IFN-γ and TNF-α. In addition, CD8+ CAR-T cells up-regulated the cytotoxic molecules granzyme B and perforin. Interestingly, CAR-T cell activation occurred even in the presence of PD-L1. Consistent with these results, CAR-T cells efficiently recognized GBC cell lines expressing CEA and PD-L1, but not a CEA-negative cell line. Furthermore, CAR-T cells exhibited in vitro cytotoxicity and reduced in vivo tumor growth of GB-d1 cells. In summary, we demonstrate that CEA represents a relevant antigen for GBC that can be targeted by CAR-T cells at the preclinical level. This study warrants further development of the adoptive transfer of CEA-specific CAR-T cells as a potential immunotherapy for GBC.