Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mar Sci ; 6: 391, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31534949

ABSTRACT

Developments in observing system technologies and ocean data assimilation (DA) are symbiotic. New observation types lead to new DA methods and new DA methods, such as coupled DA, can change the value of existing observations or indicate where new observations can have greater utility for monitoring and prediction. Practitioners of DA are encouraged to make better use of observations that are already available, for example, taking advantage of strongly coupled DA so that ocean observations can be used to improve atmospheric analyses and vice versa. Ocean reanalyses are useful for the analysis of climate as well as the initialization of operational long-range prediction models. There are many remaining challenges for ocean reanalyses due to biases and abrupt changes in the ocean-observing system throughout its history, the presence of biases and drifts in models, and the simplifying assumptions made in DA solution methods. From a governance point of view, more support is needed to bring the ocean-observing and DA communities together. For prediction applications, there is wide agreement that protocols are needed for rapid communication of ocean-observing data on numerical weather prediction (NWP) timescales. There is potential for new observation types to enhance the observing system by supporting prediction on multiple timescales, ranging from the typical timescale of NWP, covering hours to weeks, out to multiple decades. Better communication between DA and observation communities is encouraged in order to allow operational prediction centers the ability to provide guidance for the design of a sustained and adaptive observing network.

2.
Nat Commun ; 8(1): 1566, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29146984

ABSTRACT

Submesoscale dynamics are ubiquitous in the ocean and important in the variability of physical, biological and chemical processes. Submesoscale resolving ocean models have been shown to improve representation of observed variability. We show through data assimilation experiments that a higher-resolution submesoscale permitting system does not match the skill of a lower resolution eddy resolving system in forecasting the mesoscale circulation. Predictability of the submesoscale is inherently lower and there is an inverse cascade in the kinetic energy spectrum that lowers the predictability of the mesoscale. A benefit of the higher-resolution system is the ability to include information content from observations to produce an analysis that can at times compare more favourably with remotely sensed satellite imagery. The implication of this work is that in practice, higher-resolution systems will provide analyses with enhanced spatial detail but will be less skilful at predicting the evolution of the mesoscale features.

SELECTION OF CITATIONS
SEARCH DETAIL
...