Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 14(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38535044

ABSTRACT

Dengue is a distinctive and fatal infectious disease that spreads through female mosquitoes called Aedes aegypti. It is a notable concern for developing countries due to its low diagnosis rate. Dengue has the most astounding mortality level as compared to other diseases due to tremendous platelet depletion. Hence, it can be categorized as a life-threatening fever as compared to the same class of fevers. Additionally, it has been shown that dengue fever shares many of the same symptoms as other flu-based fevers. On the other hand, the research community is closely monitoring the popular research fields related to IoT, fog, and cloud computing for the diagnosis and prediction of diseases. IoT, fog, and cloud-based technologies are used for constructing a number of health care systems. Accordingly, in this study, a DengueFog monitoring system was created based on fog computing for prediction and detection of dengue sickness. Additionally, the proposed DengueFog system includes a weighted random forest (WRF) classifier to monitor and predict the dengue infection. The proposed system's efficacy was evaluated using data on dengue infection. This dataset was gathered between 2016 and 2018 from several hospitals in the Delhi-NCR region. The accuracy, F-value, recall, precision, error rate, and specificity metrics were used to assess the simulation results of the suggested monitoring system. It was demonstrated that the proposed DengueFog monitoring system with WRF outperforms the traditional classifiers.

2.
Sci Rep ; 13(1): 12473, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528148

ABSTRACT

Hepatitis C Virus (HCV) is a viral infection that causes liver inflammation. Annually, approximately 3.4 million cases of HCV are reported worldwide. A diagnosis of HCV in earlier stages helps to save lives. In the HCV review, the authors used a single ML-based prediction model in the current research, which encounters several issues, i.e., poor accuracy, data imbalance, and overfitting. This research proposed a Hybrid Predictive Model (HPM) based on an improved random forest and support vector machine to overcome existing research limitations. The proposed model improves a random forest method by adding a bootstrapping approach. The existing RF method is enhanced by adding a bootstrapping process, which helps eliminate the tree's minor features iteratively to build a strong forest. It improves the performance of the HPM model. The proposed HPM model utilizes a 'Ranker method' to rank the dataset features and applies an IRF with SVM, selecting higher-ranked feature elements to build the prediction model. This research uses the online HCV dataset from UCI to measure the proposed model's performance. The dataset is highly imbalanced; to deal with this issue, we utilized the synthetic minority over-sampling technique (SMOTE). This research performs two experiments. The first experiment is based on data splitting methods, K-fold cross-validation, and training: testing-based splitting. The proposed method achieved an accuracy of 95.89% for k = 5 and 96.29% for k = 10; for the training and testing-based split, the proposed method achieved 91.24% for 80:20 and 92.39% for 70:30, which is the best compared to the existing SVM, MARS, RF, DT, and BGLM methods. In experiment 2, the analysis is performed using feature selection (with SMOTE and without SMOTE). The proposed method achieves an accuracy of 41.541% without SMOTE and 96.82% with SMOTE-based feature selection, which is better than existing ML methods. The experimental results prove the importance of feature selection to achieve higher accuracy in HCV research.


Subject(s)
Hepacivirus , Hepatitis C , Humans , Random Forest , Support Vector Machine , Algorithms
3.
Front Physiol ; 13: 1085240, 2022.
Article in English | MEDLINE | ID: mdl-36601350

ABSTRACT

Diabetes mellitus is a metabolic syndrome affecting millions of people worldwide. Every year, the rate of occurrence rises drastically. Diabetes-related problems across several vital organs of the body can be fatal if left untreated. Diabetes must be detected early to receive proper treatment, preventing the condition from escalating to severe problems. Tremendous health sciences and biotechnology advancements have resulted in massive data that generated massive Electronic Health Records and clinical information. The exponential increase of electronically gathered information has resulted in more complicated, accurate prediction models that can be updated continuously using machine learning techniques. This research mainly emphasizes discovering the best ensemble model for predicting diabetes. A new multistage ensemble model is proposed for diabetes prediction. In this model, accuracy is predicated on the Pima Indian Diabetes dataset. The accuracy of the proposed ensemble model is compared with the existing machine learning model, and the experimental results demonstrate the performance of the proposed model in terms of higher Precision, f-measure, Recall, and area under the curve.

SELECTION OF CITATIONS
SEARCH DETAIL
...