Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(11): 4957-4965, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36877482

ABSTRACT

Macrophage migration inhibitory factor (MIF) is a key immunostimulatory protein with regulatory properties in several disorders, including inflammation and cancer. All the reported inhibitors that target the biological activities of MIF have been discovered by testing against its keto/enol tautomerase activity. While the natural substrate is still unknown, model MIF substrates are used for kinetic experiments. The most extensively used model substrate is 4-hydroxyphenyl pyruvate (4-HPP), a naturally occurring intermediate of tyrosine metabolism. Here, we examine the impact of 4-HPP impurities in the precise and reproducible determination of MIF kinetic data. To provide unbiased evaluation, we utilized 4-HPP powders from five different manufacturers. Biochemical and biophysical analyses showed that the enzymatic activity of MIF is highly influenced by underrepresented impurities found in 4-HPP. Besides providing inconsistent turnover results, the 4-HPP impurities also influence the accurate calculation of ISO-1's inhibition constant, an MIF inhibitor that is broadly used for in vitro and in vivo studies. The macromolecular NMR data show that 4-HPP samples from different manufacturers result in differential chemical shift perturbations of amino acids in MIF's active site. Our MIF-based conclusions were independently evaluated and confirmed by 4-hydroxyphenylpyruvate dioxygenase (HPPD) and D-dopachrome tautomerase (D-DT); two additional enzymes that utilize 4-HPP as a substrate. Collectively, these results explain inconsistencies in previously reported inhibition values, highlight the effect of impurities on the accurate determination of kinetic parameters, and serve as a tool for designing error-free in vitro and in vivo experiments.


Subject(s)
Neoplasms , Phenylpyruvic Acids , Humans , Inflammation , Catalytic Domain
2.
Methods Protoc ; 5(1)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35200535

ABSTRACT

Members of the saposin-fold protein family and related proteins sharing a similar fold (saposin-like proteins; SAPLIP) are peripheral-membrane binding proteins that perform essential cellular functions. Saposins and SAPLIPs are abundant in both plant and animal kingdoms, and peripherally bind to lipid membranes to play important roles in lipid transfer and hydrolysis, defense mechanisms, surfactant stabilization, and cell proliferation. However, quantitative studies on the interaction between proteins and membranes are challenging due to the different nature of the two components in relation to size, structure, chemical composition, and polarity. Using liposomes and the saposin-fold member saposin C (sapC) as model systems, we describe here a method to apply solution NMR and dynamic light scattering to study the interaction between SAPLIPs and synthetic membranes at the quantitative level. Specifically, we prove with NMR that sapC binds reversibly to the synthetic membrane in a pH-controlled manner and show the dynamic nature of its fusogenic properties with dynamic light scattering. The method can be used to infer the optimal pH for membrane binding and to determine an apparent dissociation constant (KDapp) for protein-liposome interaction. We propose that these experiments can be applied to other proteins sharing the saposin fold.

3.
Pharmaceutics ; 13(4)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921905

ABSTRACT

Saposin C (sapC) is a lysosomal, peripheral-membrane protein displaying liposome fusogenic capabilities. Proteoliposomes of sapC and phosphatidylserine have been shown to be toxic for cancer cells and are currently on clinical trial to treat glioblastoma. As proof-of-concept, we show two strategies to enhance the applications of sapC proteoliposomes: (1) Engineering chimeras composed of sapC to modulate proteoliposome function; (2) Engineering sapC to modify its lipid binding capabilities. In the chimera design, sapC is linked to a cell death-inducing peptide: the BH3 domain of the Bcl-2 protein PUMA. We show by solution NMR and dynamic light scattering that the chimera is functional at the molecular level by fusing liposomes and by interacting with prosurvival Bcl-xL, which is PUMA's known mechanism to induce cell death. Furthermore, sapC-PUMA proteoliposomes enhance cytotoxicity in glioblastoma cells compared to sapC. Finally, the sapC domain of the chimera has been engineered to optimize liposome binding at pH close to physiological values as protein-lipid interactions are favored at acidic pH in the native protein. Altogether, our results indicate that the properties of sapC proteoliposomes can be modified by engineering the protein surface and by the addition of small peptides as fusion constructs.

4.
J Biol Chem ; 294(2): 439-452, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30459235

ABSTRACT

The inflammasome is a multiprotein complex necessary for the onset of inflammation. The adapter protein ASC assembles inflammasome components by acting as a molecular glue between danger-signal sensors and procaspase-1. The assembly is mediated by ASC self-association and protein interactions via its two Death Domains, PYD and CARD. Truncated versions of ASC have been shown to form filaments, but information on the filaments formed by full-length ASC is needed to construct a meaningful model of inflammasome assembly. To gain insights into this system, we used a combination of transmission EM, NMR, and computational analysis to investigate intact ASC structures. We show that ASC forms ∼6-7-nm-wide filaments that stack laterally to form bundles. The structural characteristics and dimensions of the bundles indicate that both PYD and CARD are integral parts of the filament. A truncated version of ASC with only the CARD domain (ASCCARD) forms different filaments (∼3-4-nm width), providing further evidence that both domains work in concert in filament assembly. Ring-shaped protein particles bound to pre-existing filaments match the size of ASC dimer structures generated by NMR-based protein docking, suggesting that the ASC dimer could be a basic building block for filament formation. Solution NMR binding studies identified the protein surfaces involved in the ASCCARD-ASCCARD interaction. These data provide new insights into the structural underpinnings of the inflammasome and should inform future efforts to interrogate this important biological system.


Subject(s)
CARD Signaling Adaptor Proteins/chemistry , CARD Signaling Adaptor Proteins/ultrastructure , Caspase Activation and Recruitment Domain , Pyrin Domain , Apoptosis , CARD Signaling Adaptor Proteins/immunology , Humans , Hydrogen-Ion Concentration , Inflammasomes/immunology , Models, Molecular , Protein Conformation , Protein Conformation, alpha-Helical , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...