Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0289742, 2024.
Article in English | MEDLINE | ID: mdl-38748698

ABSTRACT

Pollinator losses threaten ecosystems and food security, diminishing gene flow and reproductive output for ecological communities and impacting ecosystem services broadly. For four focal families of bees and butterflies, we constructed over 1400 ensemble species distribution models over two time periods for North America. Models indicated disproportionally increased richness in eastern North America over time, with decreases in richness over time in the western US and southern Mexico. To further pinpoint geographic areas of vulnerability, we mapped records of potential pollinator species of conservation concern and found high concentrations of detections in the Great Lakes region, US East Coast, and southern Canada. Finally, we estimated asymptotic diversity indices for genera known to include species that visit flowers and may carry pollen for ecoregions across two time periods. Patterns of generic diversity through time mirrored those of species-level analyses, again indicating a decline in pollinators in the western U.S. Increases in generic diversity were observed in cooler and wetter ecoregions. Overall, changes in pollinator diversity appear to reflect changes in climate, though other factors such as land use change may also explain regional shifts. While statistical methods were employed to account for unequal sampling effort across regions and time, improved monitoring efforts with rigorous sampling designs would provide a deeper understanding of pollinator communities and their responses to ongoing environmental change.


Subject(s)
Biodiversity , Butterflies , Pollination , Butterflies/physiology , Animals , Bees/physiology , North America , Ecosystem
2.
Ecol Appl ; 32(6): e2608, 2022 09.
Article in English | MEDLINE | ID: mdl-35366031

ABSTRACT

Habitat loss disrupts species interactions through local extinctions, potentially orphaning species that depend on interacting partners, via mutualisms or commensalisms, and increasing secondary extinction risk. Orphaned species may become functionally or secondarily extinct, increasing the severity of the current biodiversity crisis. While habitat destruction is a major cause of biodiversity loss, the number of secondary extinctions is largely unknown. We investigate the relationship between habitat loss, orphaned species, and bipartite network properties. Using a real seed dispersal network, we simulate habitat loss to estimate the rate at which species are orphaned. To be able to draw general conclusions, we also simulate habitat loss in synthetic networks to quantify how changes in network properties affect orphan rates across broader parameter space. Both real and synthetic network simulations show that even small amounts of habitat loss can cause up to 10% of species to be orphaned. More area loss, less connected networks, and a greater disparity in the species richness of the network's trophic levels generally result in more orphaned species. As habitat is lost to land-use conversion and climate change, more orphaned species increase the loss of community-level and ecosystem functions. However, the potential severity of repercussions ranges from minimal (no species orphaned) to catastrophic (up to 60% of species within a network orphaned). Severity of repercussions also depends on how much the interaction richness and intactness of the community affects the degree of redundancy within networks. Orphaned species could add substantially to the loss of ecosystem function and secondary extinction worldwide.


Subject(s)
Ecosystem , Extinction, Biological , Biodiversity , Climate Change
3.
Ecol Appl ; 32(2): e2522, 2022 03.
Article in English | MEDLINE | ID: mdl-34918411

ABSTRACT

Disruption of plant-pollinator interactions by invasive predators is poorly understood but may pose a critical threat for native ecosystems. In a multiyear field experiment in Hawai'i, we suppressed abundances of globally invasive predators and then observed insect visitation to flowers of six native plant species. Three plant species are federally endangered (Haplostachys haplostachya, Silene lanceolata, Tetramolopium arenarium) and three are common throughout their range (Bidens menziesii, Dubautia linearis, Sida fallax). Insect visitors were primarily generalist pollinators, including taxa that occur worldwide such as solitary bees (e.g., Lasioglossum impavidum), social bees (e.g., Apis mellifera), and syrphid flies (e.g., Allograpta exotica). We found that suppressing invasive rats (Rattus rattus), mice (Mus musculus), ants (Linepithema humile, Tapinoma melanocephalum), and yellowjacket wasps (Vespula pensylvanica) had positive effects on pollinator visitation to plants in 16 of 19 significant predator-pollinator-plant interactions. We found only positive effects of suppressing rats and ants, and both positive and negative effects of suppressing mice and yellowjacket wasps, on the frequency of interactions between pollinators and plants. Model results predicted that predator eradication could increase the frequency of insect visitation to flowering species, in some cases by more than 90%. Previous results from the system showed that these flowering species produced significantly more seed when flowers were allowed to outcross than when flowers were bagged to exclude pollinators, indicating limited autogamy. Our findings highlight the potential benefits of suppression or eradication of invasive rodents, ants, and yellowjackets to reverse pollination disruption, particularly in locations with high numbers of at-risk plant species or already imperiled pollinator populations.


Subject(s)
Ecosystem , Introduced Species , Pollination , Animals , Ants , Bees , Flowers , Mice , Rats , Wasps
4.
AoB Plants ; 12(2): plz048, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32346468

ABSTRACT

Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant's life history and environmental variability that ultimately influences a population's ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity.

5.
AoB Plants ; 11(6): plz067, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31857875

ABSTRACT

There is growing realization that intraspecific variation in seed dispersal can have important ecological and evolutionary consequences. However, we do not have a good understanding of the drivers or causes of intraspecific variation in dispersal, how strong an effect these drivers have, and how widespread they are across dispersal modes. As a first step to developing a better understanding, we present a broad, but not exhaustive, review of what is known about the drivers of intraspecific variation in seed dispersal, and what remains uncertain. We start by decomposing 'drivers of intraspecific variation in seed dispersal' into intrinsic drivers (i.e. variation in traits of individual plants) and extrinsic drivers (i.e. variation in ecological context). For intrinsic traits, we further decompose intraspecific variation into variation among individuals and variation of trait values within individuals. We then review our understanding of the major intrinsic and extrinsic drivers of intraspecific variation in seed dispersal, with an emphasis on variation among individuals. Crop size is the best-supported and best-understood intrinsic driver of variation across dispersal modes; overall, more seeds are dispersed as more seeds are produced, even in cases where per seed dispersal rates decline. Fruit/seed size is the second most widely studied intrinsic driver, and is also relevant to a broad range of seed dispersal modes. Remaining intrinsic drivers are poorly understood, and range from effects that are probably widespread, such as plant height, to drivers that are most likely sporadic, such as fruit or seed colour polymorphism. Primary extrinsic drivers of variation in seed dispersal include local environmental conditions and habitat structure. Finally, we present a selection of outstanding questions as a starting point to advance our understanding of individual variation in seed dispersal.

6.
AoB Plants ; 11(5): plz042, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31579119

ABSTRACT

The distribution and abundance of plants across the world depends in part on their ability to move, which is commonly characterized by a dispersal kernel. For seeds, the total dispersal kernel (TDK) describes the combined influence of all primary, secondary and higher-order dispersal vectors on the overall dispersal kernel for a plant individual, population, species or community. Understanding the role of each vector within the TDK, and their combined influence on the TDK, is critically important for being able to predict plant responses to a changing biotic or abiotic environment. In addition, fully characterizing the TDK by including all vectors may affect predictions of population spread. Here, we review existing research on the TDK and discuss advances in empirical, conceptual modelling and statistical approaches that will facilitate broader application. The concept is simple, but few examples of well-characterized TDKs exist. We find that significant empirical challenges exist, as many studies do not account for all dispersal vectors (e.g. gravity, higher-order dispersal vectors), inadequately measure or estimate long-distance dispersal resulting from multiple vectors and/or neglect spatial heterogeneity and context dependence. Existing mathematical and conceptual modelling approaches and statistical methods allow fitting individual dispersal kernels and combining them to form a TDK; these will perform best if robust prior information is available. We recommend a modelling cycle to parameterize TDKs, where empirical data inform models, which in turn inform additional data collection. Finally, we recommend that the TDK concept be extended to account for not only where seeds land, but also how that location affects the likelihood of establishing and producing a reproductive adult, i.e. the total effective dispersal kernel.

7.
PLoS One ; 9(1): e83284, 2014.
Article in English | MEDLINE | ID: mdl-24454700

ABSTRACT

Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.


Subject(s)
Biodiversity , Trees/growth & development , Tropical Climate , Costa Rica , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...