Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Sci Technol ; 51(11): 5978-5988, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28457132

ABSTRACT

For the first time, trapped ion mobility spectrometry (TIMS) in tandem with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is applied to the analysis of the low energy water accommodated fraction (WAF) of a crude oil as a function of the exposure to light. The TIMS-FT-ICR MS analysis provided, in addition to the heteroatom series identification, new insights into the WAF isomeric complexity (e.g., [m/z; chemical formula; collision cross section] data sets) for a better evaluation of the degree of chemical and structural photoinduced transformations. Inspection of the [m/z; chemical formula; collision cross section] data sets shows that the WAF composition changes as a function of the exposure to light in the first 115 h by initial photosolubilization of HC components and their photo-oxidation up to O4-5 of mainly high double bond equivalence species (DBE > 9). The addition of high resolution TIMS (resolving power of 90-220) to ultrahigh resolution FT-ICR MS (resolving power over 400k) permitted the identification of a larger number of molecular components in a single analysis (e.g., over 47k using TIMS-MS compared to 12k by MS alone), with instances of over 6-fold increase in the number of molecular features per nominal mass due to the WAF isomeric complexity. This work represents a stepping stone toward a better understanding of the WAF components and highlights the need for better experimental and theoretical approaches to characterize the WAF structural diversity.


Subject(s)
Petroleum , Water Pollutants, Chemical , Fourier Analysis , Ions , Mass Spectrometry , Spectroscopy, Fourier Transform Infrared , Water
2.
J Vis Exp ; (121)2017 03 03.
Article in English | MEDLINE | ID: mdl-28287592

ABSTRACT

Multiple chemical processes control how crude oil is incorporated into seawater and also the chemical reactions that occur overtime. Studying this system requires the careful preparation of the sample in order to accurately replicate the natural formation of the water-accommodated fraction that occurs in nature. Low-energy water-accommodated fractions (LEWAF) are carefully prepared by mixing crude oil and water at a set ratio. Aspirator bottles are then irradiated, and at set time points, the water is sampled and extracted using standard techniques. A second challenge is the representative characterization of the sample, which must take into consideration the chemical changes that occur over time. A targeted analysis of the aromatic fraction of the LEWAF can be performed using an atmospheric-pressure laser ionization source coupled to a custom-built trapped ion mobility spectrometry-Fourier transform-ion cyclotron resonance mass spectrometer (TIMS-FT-ICR MS). The TIMS-FT-ICR MS analysis provides high-resolution ion mobility and ultrahigh-resolution MS analysis, which further allow the identification of isomeric components by their collision cross-sections (CCS) and chemical formula. Results show that as the oil-water mixture is exposed to light, there is significant photo-solubilization of the surface oil into the water. Over time, the chemical transformation of the solubilized molecules takes place, with a decrease in the number of identifications of nitrogen- and sulfur-bearing species in favor of those with a greater oxygen content than were typically observed in the base oil.


Subject(s)
Mass Spectrometry/methods , Petroleum/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Water/chemistry
3.
Sci Total Environ ; 576: 118-128, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27783930

ABSTRACT

Comprehensive characterization of exposure media used in toxicology studies is still an area of significant divergence when evaluating potential oil spill impacts. When preparing exposure media used for toxicology testing, small variations in simple parameters such as mixing energy, oil type and loading can significantly affect the concentration of the oil components to which test organisms are exposed. The key goal of this study was compare and contrast the physical and chemical compositions of oil water mixtures prepared using fresh and weathered Macondo-related oils under different conditions of mixing and in the presence/absence of chemical dispersants. All samples were assessed for the presence of droplets, droplet size distribution, and detailed chemical composition including polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbon by fluorescence (TPHF). Preparations were also tested for stability over a 96h period relevant to acute toxicity tests. The results indicate that water accommodated fractions (WAFs) produced consistent, droplet free solutions with concentration that represented the soluble components of the oil used. As expected, chemically-enhanced WAFs (CEWAFs) and high-energy WAFs (HEWAFs) generated large amounts of micron-size droplets and their chemical composition corresponded closely with that of the whole oil. However, the HEWAFs were highly dynamic, and unlike CEWAFs, much of the oil resurfaced within few hours of the initial preparation. Viscosity and lack of dispersability are the limiting factors for preparation of CEWAFs with weathered oils, in contrast HEWAFs did effectively introduce large amounts of weathered oil droplets in the test media. Despite this benefit, droplet sizes significantly decreased in HEWAFs with increase in weathering of the oil creating an additional variable to consider. Because the contribution of small droplets to toxicity is a topic that needs further investigation, the interpretation of results from high-energy preparations needs to be further evaluated. When the TPAHs concentrations of all preparations at all loadings were compared with the publicly available water-column data for samples analyzed during and after the DWH incident response they all ranked above the vast majority of the 10,828 samples reported. Until a better characterization of all the available DWH water column individual-component chemistry data is produced the question of environmental relevance and the pursuit of toxicological studies under more realistic conditions continues to be a significant challenge that should be further explored.


Subject(s)
Ecotoxicology/methods , Oils/chemistry , Petroleum Pollution/analysis , Petroleum , Polycyclic Aromatic Hydrocarbons
4.
Sci Total Environ ; 557-558: 453-68, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27017076

ABSTRACT

Because of the extreme conditions of the Deepwater Horizon (DWH) release (turbulent flow at 1500m depth and 5°C water temperature) and the sub-surface application of dispersant, small but neutrally buoyant oil droplets <70µm were formed, remained in the water column and were subjected to in-situ biodegradation processes. In order to investigate the biodegradation of Macondo oil components during the release, we designed and performed an experiment to evaluate the interactions of the indigenous microbial communities present in the deep waters of the Gulf of Mexico (GOM) with oil droplets of two representative sizes (10µm and 30µm median volume diameter) created with Macondo source oil in the presence of Corexit 9500 using natural seawater collected at the depth of 1100-1300m in the vicinity of the DWH wellhead. The evolution of the oil was followed in the dark and at 5°C for 64days by collecting sacrificial water samples at fixed intervals and analyzing them for a wide range of chemical and biological parameters including volatile components, saturated and aromatic hydrocarbons, dispersant markers, dissolved oxygen, nutrients, microbial cell counts and microbial population dynamics. A one phase exponential decay from a plateau model was used to calculate degradation rates and lag times for more than 150 individual oil components. Calculations were normalized to a conserved petroleum biomarker (30αß-hopane). Half-lives ranged from about 3days for easily degradable compounds to about 60days for higher molecular weight aromatics. Rapid degradation was observed for BTEX, 2-3 ring PAHs, and n-alkanes below n-C23. The results in this experimental study showed good agreement with the n-alkane (n-C13 to n-C26) half-lives (0.6-9.5days) previously reported for the Deepwater Horizon plume samples and other laboratory studies with chemically dispersed Macondo oil conducted at low temperatures (<8°C). The responses of the microbial populations also were consistent with what was reported during the actual oil release, e.g. Colwellia, Cycloclasticus and Oceanospirillales (including the specific DWH Oceanospirillales) were present and increased in numbers indicating that they were degrading components of the oil. The consistency of the field and laboratory data indicate that these results could be used, in combination with other field and model data to characterize the dissipation of Macondo oil in the deepwater environment as part of the risk assessment estimations.


Subject(s)
Biodegradation, Environmental , Environmental Monitoring , Petroleum Pollution , Petroleum/metabolism , Seawater/microbiology , Water Microbiology , Water Pollutants, Chemical/analysis , Gammaproteobacteria , Gulf of Mexico , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Seawater/chemistry , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL