Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 19(3): e0300472, 2024.
Article in English | MEDLINE | ID: mdl-38517901

ABSTRACT

Gilthead seabream (Sparus aurata) is an important species in Mediterranean aquaculture. Rapid intensification of its production and sub-optimal husbandry practices can cause stress, impairing overall fish performance and raising issues related to sustainability, animal welfare, and food safety. The advent of next-generation sequencing technologies has greatly revolutionized the study of fish stress biology, allowing a deeper understanding of the molecular stress responses. Here, we characterized for the first time, using RNA-seq, the different hepatic transcriptome responses of gilthead seabream to common aquaculture challenges, namely overcrowding, net handling, and hypoxia, further integrating them with the liver proteome and metabolome responses. After reference-guided transcriptome assembly, annotation, and differential gene expression analysis, 7, 343, and 654 genes were differentially expressed (adjusted p-value < 0.01, log2|fold-change| >1) in the fish from the overcrowding, net handling, and hypoxia challenged groups, respectively. Gene set enrichment analysis (FDR < 0.05) suggested a scenario of challenge-specific responses, that is, net handling induced ribosomal assembly stress, whereas hypoxia induced DNA replication stress in gilthead seabream hepatocytes, consistent with proteomics and metabolomics' results. However, both responses converged upon the downregulation of insulin growth factor signalling and induction of endoplasmic reticulum stress. These results demonstrate the high phenotypic plasticity of this species and its differential responses to distinct challenging environments at the transcriptomic level. Furthermore, it provides significant resources for characterizing and identifying potentially novel genes that are important for gilthead seabream resilience and aquaculture production efficiency with regard to fish welfare.


Subject(s)
Sea Bream , Animals , Sea Bream/metabolism , Transcriptome , RNA-Seq , Multiomics , Gene Expression Profiling/methods , Liver , Aquaculture , Hypoxia
2.
Mol Ecol Resour ; 24(2): e13891, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010340

ABSTRACT

With declining biodiversity worldwide, a better understanding of species diversity and their relationships is imperative for conservation and management efforts. Marine sponges are species-rich ecological key players on coral reefs, but their species diversity is still poorly understood. This is particularly true for the demosponge order Haplosclerida, whose systematic relationships are contentious due to the incongruencies between morphological and molecular phylogenetic hypotheses. The single gene markers applied in previous studies did not resolve these discrepancies. Hence, there is a high need for a genome-wide approach to derive a phylogenetically robust classification and understand this group's evolutionary relationships. To this end, we developed a target enrichment-based multilocus probe assay for the order Haplosclerida using transcriptomic data. This probe assay consists of 20,000 enrichment probes targeting 2956 ultraconserved elements in coding (i.e. exon) regions across the genome and was tested on 26 haplosclerid specimens from the Red Sea. Our target-enrichment approach correctly placed our samples in a well-supported phylogeny, in agreement with previous haplosclerid molecular phylogenies. Our results demonstrate the applicability of high-resolution genomic methods in a systematically complex marine invertebrate group and provide a promising approach for robust phylogenies of Haplosclerida. Subsequently, this will lead to biologically unambiguous taxonomic revisions, better interpretations of biological and ecological observations and new avenues for applied research, conservation and managing declining marine diversity.


Subject(s)
Porifera , Animals , Porifera/genetics , Phylogeny , Indian Ocean , Coral Reefs , Biodiversity
3.
Mar Drugs ; 20(1)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35049929

ABSTRACT

Actinoporins are proteinaceous toxins known for their ability to bind to and create pores in cellular membranes. This quality has generated interest in their potential use as new tools, such as therapeutic immunotoxins. Isolated historically from sea anemones, genes encoding for similar actinoporin-like proteins have since been found in a small number of other animal phyla. Sequencing and de novo assembly of Irish Haliclona transcriptomes indicated that sponges also possess similar genes. An exhaustive analysis of publicly available sequencing data from other sponges showed that this is a potentially widespread feature of the Porifera. While many sponge proteins possess a sequence similarity of 27.70-59.06% to actinoporins, they show consistency in predicted structure. One gene copy from H. indistincta has significant sequence similarity to sea anemone actinoporins and possesses conserved residues associated with the fundamental roles of sphingomyelin recognition, membrane attachment, oligomerization, and pore formation, indicating that it may be an actinoporin. Phylogenetic analyses indicate frequent gene duplication, no distinct clade for sponge-derived proteins, and a stronger signal towards actinoporins than similar proteins from other phyla. Overall, this study provides evidence that a diverse array of Porifera represents a novel source of actinoporin-like proteins which may have biotechnological and pharmaceutical applications.


Subject(s)
Aquatic Organisms/chemistry , Biological Products/chemistry , Porifera/chemistry , Animals , Phylogeny
4.
Sci Rep ; 9(1): 17321, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754216

ABSTRACT

Sponges (Phylum Porifera) are among the oldest Metazoa and considered critical to understanding animal evolution and development. They are also the most prolific source of marine-derived chemicals with pharmaceutical relevance. Cell lines are important tools for research in many disciplines, and have been established for many organisms, including freshwater and terrestrial invertebrates. Despite many efforts over multiple decades, there are still no cell lines for marine invertebrates. In this study, we report a breakthrough: we demonstrate that an amino acid-optimized nutrient medium stimulates rapid cell division in 9 sponge species. The fastest dividing cells doubled in less than 1 hour. Cultures of 3 species were subcultured from 3 to 5 times, with an average of 5.99 population doublings after subculturing, and a lifespan from 21 to 35 days. Our results form the basis for developing marine invertebrate cell models to better understand early animal evolution, determine the role of secondary metabolites, and predict the impact of climate change to coral reef community ecology. Furthermore, sponge cell lines can be used to scale-up production of sponge-derived chemicals for clinical trials and develop new drugs to combat cancer and other diseases.


Subject(s)
Aquatic Organisms/cytology , Cell Culture Techniques/methods , Cell Division , Culture Media/metabolism , Porifera/cytology , Amino Acids/metabolism , Animals , Aquatic Organisms/physiology , Biotechnology/methods , Cell Line , Marine Biology/methods , Porifera/physiology
5.
In Vitro Cell Dev Biol Anim ; 55(3): 149-158, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30747414

ABSTRACT

Sponges are rich sources of novel natural products. Production in cell cultures may be an option for supply of these compounds but there are currently no sponge cell lines. Because there is a lack of understanding about the precise conditions and nutritional requirements that are necessary to sustain sponge cells in vitro, there has yet to be a defined, sponge-specific nutrient medium. This study utilized a genetic algorithm approach to optimize the amino acid composition of a commercially available basal cell culture medium in order to increase the metabolic activity of cells of the marine sponge Dysidea etheria. Four generations of the algorithm were carried out in vitro in wet lab conditions and an optimal medium combination was selected for further evaluation. When compared to the basal medium control, there was a twofold increase in metabolic activity. The genetic algorithm approach can be used to optimize other components of culture media to efficiently optimize chosen parameters without the need for detailed knowledge on all possible interactions.


Subject(s)
Algorithms , Cell Culture Techniques/methods , Culture Media/chemistry , Culture Media/pharmacology , Dysidea/cytology , Amino Acids/analysis , Animals , Dysidea/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL