Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Front Neural Circuits ; 17: 1093066, 2023.
Article in English | MEDLINE | ID: mdl-37275468

ABSTRACT

The primary motor cortex (MOp) is an important site for motor skill learning. Interestingly, neurons in MOp possess reward-related activity, presumably to facilitate reward-based motor learning. While pyramidal neurons (PNs) and different subtypes of GABAergic inhibitory interneurons (INs) in MOp all undergo cell-type specific plastic changes during motor learning, the vasoactive intestinal peptide-expressing inhibitory interneurons (VIP-INs) in MOp have been shown to preferentially respond to reward and play a critical role in the early phases of motor learning by triggering local circuit plasticity. To understand how VIP-INs might integrate various streams of information, such as sensory, pre-motor, and reward-related inputs, to regulate local plasticity in MOp, we performed monosynaptic rabies tracing experiments and employed an automated cell counting pipeline to generate a comprehensive map of brain-wide inputs to VIP-INs in MOp. We then compared this input profile to the brain-wide inputs to somatostatin-expressing inhibitory interneurons (SST-INs) and parvalbumin-expressing inhibitory interneurons (PV-INs) in MOp. We found that while all cell types received major inputs from sensory, motor, and prefrontal cortical regions, as well as from various thalamic nuclei, VIP-INs received more inputs from the orbital frontal cortex (ORB) - a region associated with reinforcement learning and value predictions. Our findings provide insight on how the brain leverages microcircuit motifs by both integrating and partitioning different streams of long-range input to modulate local circuit activity and plasticity.


Subject(s)
Motor Cortex , Vasoactive Intestinal Peptide , Vasoactive Intestinal Peptide/metabolism , Motor Cortex/metabolism , Neurons/physiology , Interneurons/physiology , Brain Mapping , Parvalbumins/metabolism
2.
Cell Rep Med ; 4(4): 101008, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37044093

ABSTRACT

Neural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces. Here, we leveraged an algorithmic class, Gaussian-process (GP)-based Bayesian optimization (BO), to solve this problem. We show that GP-BO efficiently explores the neurostimulation space, outperforming other search strategies after testing only a fraction of the possible combinations. Through a series of real-time multi-dimensional neurostimulation experiments, we demonstrate optimization across diverse biological targets (brain, spinal cord), animal models (rats, non-human primates), in healthy subjects, and in neuroprosthetic intervention after injury, for both immediate and continual learning over multiple sessions. GP-BO can embed and improve "prior" expert/clinical knowledge to dramatically enhance its performance. These results advocate for broader establishment of learning agents as structural elements of neuroprosthetic design, enabling personalization and maximization of therapeutic effectiveness.


Subject(s)
Motor Cortex , Spinal Cord Injuries , Rats , Animals , Spinal Cord Injuries/therapy , Haplorhini , Bayes Theorem
3.
Front Pharmacol ; 11: 576887, 2020.
Article in English | MEDLINE | ID: mdl-33041822

ABSTRACT

In this review, we will focus on the activity of ginsenosides on membranes and their related effects, from physicochemical, biophysical, and pharmacological viewpoints. Ginsenosides are a class of saponins with a large structural diversity and a wide range of pharmacological effects. These effects can at least partly be related to their activity on membranes which results from their amphiphilic character. Some ginsenosides are able to interact with membrane lipids and associate into nanostructures, making them possible adjuvants for vaccines. They are able to modulate membrane biophysical properties such as membrane fluidity, permeability or the formation of lateral domains with some degree of specificity towards certain cell types such as bacteria, fungi, or cancer cells. In addition, they have shown antioxidant properties which protect membranes from lipid oxidation. They further displayed some activity on membrane proteins either through direct or indirect interaction. We investigate the structure activity relationship of ginsenosides on membranes and discuss the implications and potential use as anticancer, antibacterial, and antifungal agents.

4.
IEEE Trans Neural Syst Rehabil Eng ; 28(6): 1452-1460, 2020 06.
Article in English | MEDLINE | ID: mdl-32286996

ABSTRACT

The development of neurostimulation techniques to evoke motor patterns is an active area of research. It serves as a crucial experimental tool to probe computation in neural circuits, and has applications in neuroprostheses used to aid recovery of motor function after stroke or injury to the nervous system. There are two important challenges when designing algorithms to unveil and control neurostimulation-to-motor correspondences, thereby linking spatiotemporal patterns of neural stimulation to muscle activation: (1) the exploration of motor maps needs to be fast and efficient (exhaustive search is to be avoided for clinical and experimental reasons) (2) online learning needs to be flexible enough to deal with noise and occasional spurious responses. We propose a stimulation search algorithm to address these issues, and demonstrate its efficacy with experiments in the motor cortex (M1) of a non-human primate model. Our solution is a novel iterative process using Bayesian Optimization via Gaussian Processes on a hierarchy of increasingly complex signal spaces. We show that our algorithm can successfully and rapidly learn correspondences between complex stimulation patterns and evoked muscle activation patterns, where standard approaches fail. Importantly, we uncover nonlinear circuit-level computations in M1 that would have been difficult to identify using conventional mapping techniques.


Subject(s)
Motor Cortex , Algorithms , Animals , Bayes Theorem , Learning
5.
J Neurophysiol ; 123(1): 407-419, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31774345

ABSTRACT

Premotor areas of primates are specialized cortical regions that can contribute to hand movements by modulating the outputs of the primary motor cortex (M1). The goal of the present work was to study how the supplementary motor area (SMA) located within the same hemisphere [i.e., ipsilateral SMA (iSMA)] or the opposite hemisphere [i.e., contralateral (cSMA)] modulate the outputs of M1. We used paired-pulse protocols with intracortical stimulations in sedated capuchin monkeys. A conditioning stimulus in iSMA or cSMA was delivered simultaneously or before a test stimulus in M1 with different interstimulus intervals (ISIs) while electromyographic activity was recorded in hand and forearm muscles. The pattern of modulation from iSMA and cSMA shared some clear similarities. In particular, both areas predominantly induced facilitatory effects on M1 outputs with shorter ISIs and inhibitory effects with longer ISIs. However, the incidence and strength of facilitatory effects were greater for iSMA than cSMA. We then compared the pattern of modulatory effects from SMA to the ones from the dorsal and ventral premotor cortexes (PMd and PMv) collected in the same series of experiments. Among premotor areas, the impact of SMA on M1 outputs was always weaker than the one of either PMd or PMv, and this was regardless of the hemisphere, or the ISI, tested. These results show that SMA exerts a unique set of modulations on M1 outputs, which could support its specific function for the production of hand movements.NEW & NOTEWORTHY We unequivocally isolated stimulation to either the ipsilateral or contralateral supplementary motor area (SMA) using invasive techniques and compared their modulatory effects on the outputs of primary motor cortex (M1). Modulations from both SMAs shared many similarities. However, facilitatory effects evoked from ipsilateral SMA were more common and more powerful. This pattern differs from the ones of other premotor areas, which suggests that each premotor area makes unique contributions to the production of motor outputs.


Subject(s)
Evoked Potentials, Motor/physiology , Functional Laterality/physiology , Hand/physiology , Motor Cortex/physiology , Movement/physiology , Nerve Net/physiology , Animals , Cebus , Electric Stimulation , Electromyography , Female
6.
Sci Rep ; 9(1): 7285, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31086211

ABSTRACT

The membrane activity of some saponins, such as digitonin or alpha-hederin, is usually attributed to their interaction with membrane cholesterol (Chol). This contrasts with our recent publication showing that Chol, contrary to sphingomyelin (SM), can delay the cytotoxicity of the saponin ginsenoside Rh2, challenging the usual view that most saponins mediate their membrane effects through interaction with Chol. The aim of the present study was to elucidate the respective importance of Chol and SM as compared to phosphatidylcholine (PC) species in the membrane-related effects of Rh2. On simple lipid monolayers, Rh2 interacted more favorably with eggSM and DOPC than with Chol and eggPC. Using Large Unilamellar Vesicles (LUVs) of binary or ternary lipid compositions, we showed that Rh2 increased vesicle size, decreased membrane fluidity and induced membrane permeability with the following preference: eggSM:eggPC > eggSM:eggPC:Chol > eggPC:Chol. On Giant Unilamellar Vesicles (GUVs), we evidenced that Rh2 generated positive curvatures in eggSM-containing GUVs and small buds followed by intra-luminal vesicles in eggSM-free GUVs. Altogether, our data indicate that eggSM promotes and accelerates membrane-related effects induced by Rh2 whereas Chol slows down and depresses these effects. This study reconsiders the theory that Chol is the only responsible for the activity of saponins.


Subject(s)
Cholesterol/metabolism , Egg Proteins/metabolism , Ginsenosides/pharmacology , Sphingomyelins/metabolism , Unilamellar Liposomes/metabolism , Animals , Cell Membrane Permeability/drug effects , Chickens , Membrane Fluidity/drug effects , Panax/chemistry , Phosphatidylcholines/metabolism
7.
Front Immunol ; 10: 154, 2019.
Article in English | MEDLINE | ID: mdl-30787931

ABSTRACT

NKG2D is an activating receptor expressed on the surface of immune cells including subsets of T lymphocytes. NKG2D binds multiple ligands (NKG2DL) whose expression are differentially triggered in a cell type and stress specific manner. The NKG2D-NKG2DL interaction has been involved in autoimmune disorders but its role in animal models of multiple sclerosis (MS) remains incompletely resolved. Here we show that NKG2D and its ligand MULT1 contribute to the pathobiology of experimental autoimmune encephalomyelitis (EAE). MULT1 protein levels are increased in the central nervous system (CNS) at EAE disease peak; soluble MULT1 is elevated in the cerebrospinal fluid of both active and passive EAE. We establish that such soluble MULT1 enhances effector functions (e.g., IFNγ production) of activated CD8 T lymphocytes from wild type but not from NKG2D-deficient (Klrk1-/-) mice in vitro. The adoptive transfer of activated T lymphocytes from wild type donors induced a significantly reduced EAE disease in Klrk1-/- compared to wild type (Klrk1+/+) recipients. Characterization of T lymphocytes infiltrating the CNS of recipient mice shows that donor (CD45.1) rather than endogenous (CD45.2) CD4 T cells are the main producers of key cytokines (IFNγ, GM-CSF). In contrast, infiltrating CD8 T lymphocytes include mainly endogenous (CD45.2) cells exhibiting effector properties (NKG2D, granzyme B and IFNγ). Our data support the notion that endogenous CD8 T cells contribute to passive EAE pathobiology in a NKG2D-dependent manner. Collectively, our results point to the deleterious role of NKG2D and its MULT1 in the pathobiology of a MS mouse model.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Histocompatibility Antigens Class I/immunology , Membrane Proteins/immunology , Multiple Sclerosis/immunology , NK Cell Lectin-Like Receptor Subfamily K/immunology , Animals , Brain/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Disease Progression , Mice, Inbred C57BL , Mice, Knockout , NK Cell Lectin-Like Receptor Subfamily K/genetics , Spinal Cord/immunology
8.
Toxicol Appl Pharmacol ; 352: 59-67, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29782965

ABSTRACT

Saponins exhibit several biological and pharmacological activities, such as antibacterial, anti-inflammatory and anticancer effects. Many studies attribute their activities to their interactions with cholesterol. In this study, we focus on the steroid saponin ginsenoside Rh2, one of the active principles of Panax ginseng root. Some evidence suggests that lipid rafts, defined as nanodomains enriched in cholesterol and sphingolipids, could be involved in the Rh2-induced apoptosis. However, the role of membrane lipids, especially cholesterol, in this process is still poorly understood. Here, we demonstrate that (i) A549, THP-1 and U937 cells are all susceptible to the Rh2-induced apoptosis but to a differential extent and (ii) the cytotoxic effect inversely correlates with the cell membrane cholesterol content. Upon cholesterol depletion via methyl-ß-cyclodextrin, those three cells lines become more sensitive to Rh2-induced apoptosis. Then, focusing on the cholesterol-auxotroph U937 cell line, we showed that Rh2 alters plasma membrane fluidity by compacting the hydrophobic core of lipid bilayer (DPH anisotropy) and relaxing the interfacial packaging of the polar head of phospholipids (TMA-DPH anisotropy). The treatment with Rh2 conducts to the dephosphorylation of Akt and the activation of the intrinsic pathway of apoptosis (loss of mitochondrial membrane potential, caspase-9 and -3 activation). All these features are induced faster in cholesterol-depleted cells, which could be explained by faster cell accumulation of Rh2 in these conditions. This work is the first reporting that membrane cholesterol could delay the activity of ginsenoside Rh2, renewing the idea that saponin cytotoxicity is ascribed to an interaction with membrane cholesterol.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cholesterol/metabolism , Ginsenosides/pharmacology , Membrane Microdomains/drug effects , A549 Cells , Caspase 3/metabolism , Caspase 9/metabolism , Cholesterol/deficiency , Humans , Membrane Fluidity/drug effects , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , THP-1 Cells , U937 Cells
9.
J Neurosci ; 37(24): 5960-5973, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28536271

ABSTRACT

The dorsal and ventral premotor cortices (PMd and PMv, respectively) each take part in unique aspects for the planning and execution of hand movements. These premotor areas are components of complex anatomical networks that include the primary motor cortex (M1) of both hemispheres. One way that PMd and PMv could play distinct roles in hand movements is by modulating the outputs of M1 differently. However, patterns of effects from PMd and PMv on the outputs of M1 have not been compared systematically. Our goals were to study how PMd within the same (i.e., ipsilateral or iPMd) and in the opposite hemisphere (i.e., contralateral or cPMd) can shape M1 outputs and then compare these effects with those induced by PMv. We used paired-pulse protocols with intracortical microstimulation techniques in sedated female cebus monkeys while recording EMG signals from intrinsic hand and forearm muscles. A conditioning stimulus was delivered in iPMd or cPMd concurrently or before a test stimulus in M1. The patterns of modulatory effects from PMd were compared with those from PMv collected in the same animals. Striking differences were revealed. Conditioning stimulation in iPMd induced more frequent and powerful inhibitory effects on M1 outputs compared with iPMv. In the opposite hemisphere, cPMd conditioning induced more frequent and powerful facilitatory effects than cPMv. These contrasting patterns of modulatory effects could allow PMd and PMv to play distinct functions for the control of hand movements and predispose them to undertake different, perhaps somewhat opposite, roles in motor recovery after brain injury.SIGNIFICANCE STATEMENT The dorsal and ventral premotor cortices (PMd and PMv, respectively) are two specialized areas involved in the control of hand movements in primates. One way that PMd and PMv could participate in hand movements is by modulating or shaping the primary motor cortex (M1) outputs to hand muscles. Here, we studied the patterns of modulation from PMd within the same and in the opposite hemisphere on the outputs of M1 and compared them with those from PMv. We found that PMd and PMv have strikingly different effects on M1 outputs. These contrasting patterns of modulation provide a substrate that may allow PMd and PMv to carry distinct functions for the preparation and execution of hand movements and for recovery after brain injury.


Subject(s)
Executive Function/physiology , Long-Term Potentiation/physiology , Motor Cortex/physiology , Movement/physiology , Nerve Net/physiology , Animals , Cebus , Female , Hand/physiology , Neural Pathways/physiology
10.
Toxicol Appl Pharmacol ; 309: 24-36, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27568863

ABSTRACT

Gentamicin, an aminoglycoside used to treat severe bacterial infections, may cause acute renal failure. In the renal cell line LLC-PK1, gentamicin accumulates in lysosomes, induces alterations of their permeability, and triggers the mitochondrial pathway of apoptosis via activation of caspase-9 and -3 and changes in Bcl-2 family proteins. Early ROS production in lysosomes has been associated with gentamicin induced lysosomal membrane permeabilization. In order to better understand the multiple interconnected pathways of gentamicin-induced apoptosis and ensuing renal cell toxicity, we investigated the effect of gentamicin on p53 and p21 levels. We also studied the potential effect of gentamicin on proteasome by measuring the chymotrypsin-, trypsin- and caspase-like activities, and on endoplasmic reticulum by determining phopho-eIF2α, caspase-12 activation and GRP78 and 94. We observed an increase in p53 levels, which was dependent on ROS production. Accumulation of p53 resulted in accumulation of p21 and of phospho-eIF2α. These effects could be related to an impairment of proteasome as we demonstrated an inhibition of trypsin-and caspase-like activities. Moderate endoplasmic reticulum stress could also participate to cellular toxicity induced by gentamicin, with activation of caspase-12 without change in GRP74 and GRP98. All together, these data provide new mechanistic insights into the apoptosis induced by aminoglycoside antibiotics on renal cell lines.


Subject(s)
Anti-Bacterial Agents/pharmacology , Apoptosis/drug effects , Endoplasmic Reticulum/metabolism , Gentamicins/pharmacology , Proteasome Endopeptidase Complex/metabolism , Subcellular Fractions/physiology , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis/physiology , Gentamicins/adverse effects , LLC-PK1 Cells , Molecular Chaperones/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Subcellular Fractions/metabolism , Swine , Tumor Suppressor Protein p53/genetics
11.
Cereb Cortex ; 26(10): 3905-20, 2016 10.
Article in English | MEDLINE | ID: mdl-27473318

ABSTRACT

The ventral premotor cortex (PMv) is a key node in the neural network involved in grasping. One way PMv can carry out this function is by modulating the outputs of the primary motor cortex (M1) to intrinsic hand and forearm muscles. As many PMv neurons discharge when grasping with either arm, both PMv within the same hemisphere (ipsilateral; iPMv) and in the opposite hemisphere (contralateral; cPMv) could modulate M1 outputs. Our objective was to compare modulatory effects of iPMv and cPMv on M1 outputs to intrinsic hand and forearm muscles. We used paired-pulse protocols with intracortical microstimulations in capuchin monkeys. A conditioning stimulus was applied in either iPMv or cPMv simultaneously or prior to a test stimulus in M1 and the effects quantified in electromyographic signals. Modulatory effects from iPMv were predominantly facilitatory, and facilitation was much more common and powerful on intrinsic hand than forearm muscles. In contrast, while the conditioning of cPMv could elicit facilitatory effects, in particular to intrinsic hand muscles, it was much more likely to inhibit M1 outputs. These data show that iPMv and cPMv have very different modulatory effects on the outputs of M1 to intrinsic hand and forearm muscles.


Subject(s)
Forearm/physiology , Functional Laterality/physiology , Hand/physiology , Motor Cortex/physiology , Muscle, Skeletal/physiology , Neurons/physiology , Animals , Cebus , Electric Stimulation , Electrodes, Implanted , Electromyography , Evoked Potentials, Motor/physiology , Female , Microelectrodes , Motor Activity/physiology , Neural Pathways/physiology
12.
J Virol ; 89(12): 6462-80, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25855741

ABSTRACT

UNLABELLED: An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.


Subject(s)
HIV-1/immunology , SAIDS Vaccines/immunology , Vaccination/methods , Vaccines, DNA/immunology , Animals , Antibodies, Neutralizing/blood , Antigens, Viral/genetics , Antigens, Viral/immunology , Aspartate Aminotransferases , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Consensus Sequence , Enzyme-Linked Immunospot Assay , HIV Antibodies/blood , HIV-1/genetics , Humans , Interferon-gamma/metabolism , Macaca mulatta , SAIDS Vaccines/administration & dosage , SAIDS Vaccines/genetics , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
13.
PLoS One ; 8(11): e81769, 2013.
Article in English | MEDLINE | ID: mdl-24303070

ABSTRACT

During normal cerebellar development, the remarkable expansion of granule cell progenitors (GCPs) generates a population of granule neurons that outnumbers the total neuronal population of the cerebral cortex, and provides a model for identifying signaling pathways that may be defective in medulloblastoma. While many studies focus on identifying pathways that promote growth of GCPs, a critical unanswered question concerns the identification of signaling pathways that block mitogenic stimulation and induce early steps in differentiation. Here we identify WNT3 as a novel suppressor of GCP proliferation during cerebellar development and an inhibitor of medulloblastoma growth in mice. WNT3, produced in early postnatal cerebellum, inhibits GCP proliferation by down-regulating pro-proliferative target genes of the mitogen Sonic Hedgehog (SHH) and the bHLH transcription factor Atoh1. WNT3 suppresses GCP growth through a non-canonical Wnt signaling pathway, activating prototypic mitogen-activated protein kinases (MAPKs), the Ras-dependent extracellular-signal-regulated kinases 1/2 (ERK1/2) and ERK5, instead of the classical ß-catenin pathway. Inhibition of MAPK activity using a MAPK kinase (MEK) inhibitor reversed the inhibitory effect of WNT3 on GCP proliferation. Importantly, WNT3 inhibits proliferation of medulloblastoma tumor growth in mouse models by a similar mechanism. Thus, the present study suggests a novel role for WNT3 as a regulator of neurogenesis and repressor of neural tumors.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Medulloblastoma/metabolism , Medulloblastoma/pathology , Mitogen-Activated Protein Kinases/metabolism , Neural Stem Cells/metabolism , Wnt3 Protein/metabolism , Animals , Bone Morphogenetic Proteins/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Cerebellar Neoplasms/genetics , Disease Models, Animal , Enzyme Activation , Gene Expression , MAP Kinase Signaling System , Medulloblastoma/genetics , Mice , Mice, Knockout , Neural Stem Cells/pathology , Signal Transduction , Transduction, Genetic , Transgenes , Wnt3 Protein/genetics
14.
J Virol ; 87(24): 13589-97, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24109227

ABSTRACT

Effective strategies are needed to block mucosal transmission of human immunodeficiency virus type 1 (HIV-1). Here, we address a crucial question in HIV-1 pathogenesis: whether infected donor mononuclear cells or cell-free virus plays the more important role in initiating mucosal infection by HIV-1. This distinction is critical, as effective strategies for blocking cell-free and cell-associated virus transmission may be different. We describe a novel ex vivo model system that utilizes sealed human colonic mucosa explants and demonstrate in both the ex vivo model and in vivo using the rectal challenge model in rhesus monkeys that HIV-1-infected lymphocytes can transmit infection across the mucosa more efficiently than cell-free virus. These findings may have significant implications for our understanding of the pathogenesis of mucosal transmission of HIV-1 and for the development of strategies to prevent HIV-1 transmission.


Subject(s)
HIV Infections/virology , HIV-1/physiology , Intestinal Mucosa/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Animals , Colon/virology , HIV-1/genetics , Humans , In Vitro Techniques , Macaca mulatta , Simian Immunodeficiency Virus/genetics
15.
Vet Parasitol ; 194(2-4): 198-201, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23433603

ABSTRACT

Parasite-induced and parasite-regulated larval capsule formation and host immunosuppression are two major characteristics that are unique in Trichinella spp. infections, but the molecule(s) and mechanism(s) that mediate these processes remain largely unknown. Trichinella pseudospiralis and Trichinella spiralis, are obviously different with respect to these two characteristics. A comparative study of these two species, in particular their antigen expression profiles at different developmental stages (the main molecules involved in the cross-talk or interaction between each parasite and its host), may help us better understand the parasite molecules and mechanisms involved. Here, we constructed cDNA libraries from T. pseudospiralis adults (Ad), newborn larvae (NBL) and muscle larvae (ML) mRNA and screened them with pig anti-T. pseudospiralis serum collected 26, 32 and 60 days post-infection (p.i.). The most abundant antigens were found to vary among life-cycle stages. Pyroglutamy peptidase 1-like and 6-phosphogluconolactonase-like genes predominated in the Ad stage and a serine protease (SS2-1-like gene) predominated in NBL similar to that observed in T. spiralis. Muscle larvae expressed proteasome activator complex subunit 3-like and 21 kDa excretory/secretory protein-like genes. This study indicated that parasites of two species may utilise different molecules and mechanisms for larvae capsule formation and host immunosuppression during their infections. Proteins of antigenic genes identified in this study may be also good candidates for diagnosis, treatment or vaccination for T. pseudospiralis infection, and also for the differential diagnosis of two species' infections.


Subject(s)
Antigens, Helminth/genetics , Gene Expression Regulation, Developmental , Life Cycle Stages/genetics , Trichinella/genetics , Trichinellosis/parasitology , Animals , Antigens, Helminth/metabolism , DNA, Helminth/chemistry , DNA, Helminth/genetics , Gene Library , Helminth Proteins/genetics , Helminth Proteins/metabolism , Larva , Mice , Muscles/parasitology , RNA, Helminth/genetics , Sequence Analysis, DNA , Specific Pathogen-Free Organisms , Swine , Trichinella/growth & development , Trichinella/immunology , Trichinellosis/immunology
16.
J Med Chem ; 54(11): 3827-38, 2011 Jun 09.
Article in English | MEDLINE | ID: mdl-21568322

ABSTRACT

Epigenetic mechanisms of gene regulation have a profound role in normal development and disease processes. An integral part of this mechanism occurs through lysine acetylation of histone tails which are recognized by bromodomains. While the biological and structural characterization of many bromodomain containing proteins has advanced considerably, the therapeutic tractability of this protein family is only now becoming understood. This paper describes the discovery and molecular characterization of potent (nM) small molecule inhibitors that disrupt the function of the BET family of bromodomains (Brd2, Brd3, and Brd4). By using a combination of phenotypic screening, chemoproteomics, and biophysical studies, we have discovered that the protein-protein interactions between bromodomains and acetylated histones can be antagonized by selective small molecules that bind at the acetylated lysine recognition pocket. X-ray crystal structures of compounds bound into bromodomains of Brd2 and Brd4 elucidate the molecular interactions of binding and explain the precisely defined stereochemistry required for activity.


Subject(s)
Apolipoprotein A-I/genetics , Benzodiazepines/metabolism , Benzodiazepines/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Acetylation , Amino Acid Sequence , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/metabolism , Benzodiazepines/chemical synthesis , Benzodiazepines/chemistry , Binding Sites , Crystallography, X-Ray , Drug Discovery , Epigenomics , Hep G2 Cells , Histones/chemistry , Histones/genetics , Histones/metabolism , Humans , Lysine/chemistry , Lysine/genetics , Lysine/metabolism , Models, Molecular , Molecular Sequence Data , Molecular Structure , Molecular Targeted Therapy , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Stereoisomerism , Transcription Factors , Up-Regulation
17.
J Immunol ; 186(10): 5663-74, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21490161

ABSTRACT

The sequence diversity of HIV-1 presents a challenge for the development of an effective HIV-1 vaccine, because such a vaccine must confer protection against diverse forms of the virus. The present studies were initiated to explore how vaccine-induced clonal populations of CD8(+) T lymphocytes of rhesus monkeys recognize variants of an HIV-1 envelope epitope sequence. Evaluating a subset of variants of a selected epitope peptide that retain their binding to the MHC class I molecule of rhesus monkeys that presents this epitope peptide, we show that vaccine-elicited CD8(+) T lymphocytes comparably recognize the wild-type and a number of variant epitope peptides as determined by tetramer binding assays. In fact, the same clonal populations of CD8(+) T lymphocytes recognize the wild-type and variant epitope peptides. However, functional assays show that many of these variant epitope peptides stimulate suboptimal cytokine production by the vaccine-elicited CD8(+) T lymphocytes. These findings suggest that vaccine-induced CD8(+) T lymphocyte populations may recognize diverse forms of a viral epitope, but may not function optimally to confer protection against viruses expressing many of those variant sequences.


Subject(s)
AIDS Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Envelope Protein gp41/immunology , HIV Infections/immunology , HIV-1/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Animals , Cytokines/immunology , Epitopes, T-Lymphocyte/immunology , Flow Cytometry , Inhibitory Concentration 50 , Macaca mulatta , Polymerase Chain Reaction , Sequence Analysis, DNA
18.
mBio ; 2(2): e00271-10, 2011.
Article in English | MEDLINE | ID: mdl-21363910

ABSTRACT

UNLABELLED: The gut microbiota enhances the host's metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE: Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.


Subject(s)
Bacteria/growth & development , Bacteria/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiology , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , Body Weight , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Female , Gastrointestinal Tract/chemistry , Gastrointestinal Tract/metabolism , Germ-Free Life , Kidney/chemistry , Liver/chemistry , Liver/enzymology , Magnetic Resonance Spectroscopy , Mice , Plasma/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Urine/chemistry
19.
Nature ; 463(7279): 318-25, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20032975

ABSTRACT

The inference of transcriptional networks that regulate transitions into physiological or pathological cellular states remains a central challenge in systems biology. A mesenchymal phenotype is the hallmark of tumour aggressiveness in human malignant glioma, but the regulatory programs responsible for implementing the associated molecular signature are largely unknown. Here we show that reverse-engineering and an unbiased interrogation of a glioma-specific regulatory network reveal the transcriptional module that activates expression of mesenchymal genes in malignant glioma. Two transcription factors (C/EBPbeta and STAT3) emerge as synergistic initiators and master regulators of mesenchymal transformation. Ectopic co-expression of C/EBPbeta and STAT3 reprograms neural stem cells along the aberrant mesenchymal lineage, whereas elimination of the two factors in glioma cells leads to collapse of the mesenchymal signature and reduces tumour aggressiveness. In human glioma, expression of C/EBPbeta and STAT3 correlates with mesenchymal differentiation and predicts poor clinical outcome. These results show that the activation of a small regulatory module is necessary and sufficient to initiate and maintain an aberrant phenotypic state in cancer cells.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Mesoderm/metabolism , Mesoderm/pathology , Transcription, Genetic , Animals , Brain Neoplasms/diagnosis , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cellular Reprogramming/genetics , Computational Biology , Glioma/diagnosis , Glioma/genetics , Glioma/pathology , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neurons/metabolism , Neurons/pathology , Prognosis , Reproducibility of Results , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
20.
J Virol ; 83(19): 9803-12, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19640988

ABSTRACT

An ideal human immunodeficiency virus type 1 (HIV-1) vaccine would elicit potent cellular and humoral immune responses that recognize diverse strains of the virus. In the present study, combined methodologies (flow cytometry, Vbeta repertoire analysis, and complementarity-determining region 3 sequencing) were used to determine the clonality of CD8(+) T lymphocytes taking part in the recognition of variant epitope peptides elicited in Mamu-A*01-positive rhesus monkeys immunized with vaccines encoding diverse HIV-1 envelopes (Envs). Monkeys immunized with clade B Envs generated CD8(+) T lymphocytes that cross-recognized both clade B- and clade C-p41A epitope peptides using a large degree of diversity in Vbeta gene usage. However, with two monkeys immunized with clade C Env, one monkey exhibited p41A-specific cytotoxic T-lymphocytes (CTL) with the capacity for cross-recognition of variant epitopes, while the other monkey did not. These studies demonstrate that the cross-reactive potential of variant p41A epitope peptide-specific CTL populations can differ between monkeys that share the same restricting major histocompatibility complex class I molecule and receive the same vaccine immunogens.


Subject(s)
Epitopes/chemistry , T-Lymphocytes, Cytotoxic/virology , env Gene Products, Human Immunodeficiency Virus/metabolism , Animals , CD3 Complex/biosynthesis , CD8-Positive T-Lymphocytes/virology , Epitopes, T-Lymphocyte/chemistry , Haplorhini , Immune System , Macaca mulatta , Peptides/chemistry , Polymerase Chain Reaction , Sequence Analysis, DNA , T-Lymphocytes, Cytotoxic/immunology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL