Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 22(40): 22956-22962, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33026372

ABSTRACT

We investigate with in situ surface X-ray diffraction (SXRD) and X-ray reflectivity (XRR) experiments the cathodic stability of an ultrathin single-crystalline IrO2(110) film with a regular array of mesoscopic rooflike structures that is supported on a RuO2(110)/Ru(0001) template. It turns out that the planarity of the single-crystalline IrO2(110) film is lost in that IrO2(110) oxide domains delaminate at a cathodic potential of -0.18 V. Obviously, the electrolyte solution is able to reach the RuO2(110) layer presumably through the surface grain boundaries of the IrO2(110) layer. Subsequently, the single-crystalline RuO2(110) structure-directing template is reduced to amorphous hydrous RuO2, with the consequence that the IrO2(110) film loses partly its adhesion to the template. From in situ XRR experiments we find that the IrO2(110) film does not swell upon cathodic polarization down to -0.18 V, while from in situ SXRD experiments, the lattice constants of IrO2(110) are shown to be not affected. The rooflike mesostructure of the IrO2(110) flakes remains intact after cathodic polarization to -0.18 V, evidencing that the crystallinity of IrO2(110) is retained.

2.
J Phys Chem Lett ; 11(21): 9057-9062, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33045835

ABSTRACT

Down to a cathodic potentials of -1.20 V versus the reversible hydrogen electrode, the structure of IrO2(110) electrodes supported by TiO2(110) is found to be stable by in situ synchrotron-based X-ray diffraction. Such high cathodic potentials should lead to reduction to metallic Ir (Pourbaix diagram). From the IrO2 lattice parameters, determined during cathodic polarization in a H2SO4 electrolyte solution (pH 0.4), it is estimated that the unit cell volume increases by 1% due likely to proton incorporation, which is supported by the lack of significant swelling of the IrO2(110) film derived from X-ray reflectivity experiments. Ex situ X-ray photoelectron spectroscopy suggests that protons are incorporated into the IrO2(110) lattice below -1.0 V, although Ir remains exclusively in the IV+ oxidation state down to -1.20 V. Obviously, further hydrogenation of the lattice oxygen of IrO2(110) toward water is suppressed for kinetic reasons and hints at a rate-determining chemical step that cannot be controlled by the electrode potential.

3.
Inorg Chem ; 57(17): 11225-11239, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30129361

ABSTRACT

We previously reported that the [RhIII(dmbpy)2Cl2]+ (dmbpy = 4,4'-dimethyl-2,2'-bipyridine) complex is an efficient H2-evolving catalyst in water when used in a molecular homogeneous photocatalytic system for hydrogen production with [RuII(bpy)3]2+ (bpy = 2,2'-bipyridine) as photosensitizer and ascorbic acid as sacrificial electron donor. The catalysis is believed to proceed via a two-electron reduction of the Rh(III) catalyst into the square-planar [RhI(dmbpy)2]+, which reacts with protons to form a Rh(III) hydride intermediate that can, in turn, release H2 following different pathways. To improve the current knowledge of these key intermediate species for H2 production, we performed herein a detailed electrochemical investigation of the [RhIII(dmbpy)2Cl2]+ and [RhIII(dtBubpy)2Cl2]+ (dtBubpy = 4,4'-di- tert-butyl-2,2'-bipyridine) complexes in CH3CN, which is a more appropriate medium than water to obtain reliable electrochemical data. The low-valent [RhI(Rbpy)2]+ and, more importantly, the hydride [RhIII(Rbpy)2(H)Cl]+ species (R = dm or dtBu) were successfully electrogenerated by bulk electrolysis and unambiguously spectroscopically characterized. The quantitative formation of the hydrides was achieved in the presence of weak proton sources (HCOOH or CF3CO3H), owing to the fast reaction of the electrogenerated [RhI(Rbpy)2]+ species with protons. Interestingly, the hydrides are more difficult to reduce than the initial Rh(III) bis-chloro complexes by ∼310-340 mV. Besides, 0.5 equiv of H2 is generated through their electrochemical reduction, showing that Rh(III) hydrides are the initial catalytic molecular species for hydrogen evolution. Density functional theory calculations were also performed for the dmbpy derivative. The optimized structures and the theoretical absorption spectra were calculated for the initial bis-chloro complex and for the various rhodium intermediates involved in the H2 evolution process.

4.
Chemistry ; 21(20): 7435-40, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25735656

ABSTRACT

Electrochemiluminescence (ECL) and electrochemistry are reported for a heterometallic soft salt, [Ru(dtbubpy)3 ][Ir(ppy)2 (CN)2 ]2 ([Ir][Ru][Ir]), consisting of a 2:1 ratio of complementary charged Ru and Ir complexes possessing two different emission colors. The [Ru](2+) and [Ir](-) moieties in the [Ir][Ru][Ir] greatly reduce the energy required to produce ECL. Though ECL intensity in the annihilation path was enhanced 18× relative to that of [Ru(bpy)3 ](2+) , ECL in the co-reactant path with tri-n-propylamine was enhanced a further 4×. Spooling spectroscopy gives insight into ECL mechanisms: the unique light emission at 634 nm is due to the [Ru](2+) * excited state and no [Ir](-) * was generated in either route. Overall, the soft salt system is anticipated to be attractive and suitable for the development of efficient and low-energy-cost ECL detection systems.

5.
Dalton Trans ; 44(18): 8419-32, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25609226

ABSTRACT

In this study, a series of four formyl-substituted chloro-bridged iridium(iii) dimers were prepared. Their absorption, photophysical and electrochemical properties were studied in dichloromethane solution. It was found that as the formyl content increased on the cyclometalating ligands, emission unexpectedly became brighter. Organic light-emitting diodes (OLEDs) were fabricated using each of these iridium dimers as the emitter. The OLED fabricated using the brightest of the series, 2b, as the dopant afforded a decent external quantum efficiency (EQE) of 2.6%. This suggests that chloro-bridged iridium dimers are potential candidates as solid-state emitters.

6.
Inorg Chem ; 53(15): 7824-36, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-25025833

ABSTRACT

The question of the conversion of nitrile groups into amides (nitrile hydration) by action of water in mild and eco-compatible conditions and in the presence of iron is addressed in this article. We come back to the only known example of hydration of a nitrile function into carboxamide by a ferrous [Fe(II)] center in particularly mild conditions and very efficiently and demonstrate that these unusual conditions result from the occurrence of steric stress at the reaction site and formation of a more stable end product. Two bis(cyano-substituted) (tris 2-pyridyl methyl amine) ligands have been prepared, and the structures of the corresponding FeCl2 complexes are reported, both in the solid state and in solution. These two ligands only differ by the position of the nitrile group on the tripod in the α and ß position, respectively, with respect to the pyridine nitrogen. In any case, intramolecular coordination is impossible. Upon action of water, the nitrile groups are hydrated however only if they are located in the α position. The fact that the ß-substituted ß-(NC)2TPAFeCl2 complex is not water sensitive suggests that the reaction proceeds in an intramolecular way at the vicinity of the metal center. In the bis α-substituted α-(NC)2TPAFeCl2 complex, both functions are converted in a very clean fashion, pointing out that this complex exhibits ligand flexibility and is not deactivated after the first hydration. At a preparative scale, this reaction allows the one-pot conversion of the bis(cyano-substituted) tripod into a bis(amido-substituted) one in particularly mild conditions with a very good yield. Additionally, the XRD structure of a ferric compound in which the two carboxamido ligands are bound to the metal in a seven-coordinate environment is reported.


Subject(s)
Amides/chemistry , Ferrous Compounds/chemistry , Nitriles/chemistry , Ligands , X-Ray Diffraction
7.
Dalton Trans ; 43(9): 3676-80, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24419095

ABSTRACT

Here, we report the synthesis of a luminescent ion pair with the formula [Ru(dtBubpy)3][Ir(ppy)2(CN)2]2. The crystal structure of this three component, heterometallic assembly is described, along with the luminescence properties of the salt. The modulation of the energy transfer between the blue-green-emitting iridium complex and the red-emitting ruthenium complex is also discussed as a function of both medium and concentration.

8.
Dalton Trans ; 42(40): 14628-38, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-23986261

ABSTRACT

Using the HETPHEN approach, five new heteroleptic copper(I) complexes composed of a push-pull 4,4'-styryl-6,6'-dimethyl-2,2'-bipyridine ligand and a bulky bis[(2-diphenylphosphino)phenyl]-ether (DPEphos) or a bis2,9-mesityl phenanthroline (Mes2Phen) were prepared and characterized by electronic absorption spectroscopy, electrochemistry, and TD-DFT calculations. These complexes exhibit very intense absorption bands in the visible region with extinction coefficient in the range of 5-7 × 10(4) M(-1) cm(-1). The analysis of the position, intensity and band shape indicates a strong contribution from an intra-ligand charge-transfer transition centered on the styrylbipyridine ligand along with MLCT transitions. These new complexes experimentally demonstrate that good light harvesting properties with bis-diimine copper(I) complexes are a reality if one chooses suitable ligands in the coordination sphere. This constitutes a milestone towards using bis-diimine copper(I) complexes for solar energy conversion (artificial photosynthesis and solar cells).

9.
Dalton Trans ; 42(30): 10818-27, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23783812

ABSTRACT

We report here the synthesis and full chemical and physical characterizations of the first stable heteroleptic copper(I)-bis(diimine) complexes designed for implementation in dye sensitized solar cells (DSC). Thanks to the HETPHEN concept, pure and stable heteroleptic copper(I) complexes were isolated. Anchorage of the sensitizers was provided by 2,2'-biquinoline-4,4'-dicarboxylic acid (dcbqH2), while sterically challenged ligands 2,9-dimesityl-1,10-phenanthroline (L0) and N-hexyl-2,9-dimesityl-1,10-phenanthroline-[a:b]imidazo-(4'-dianisylaminophenyl) (L1) were used to complete the copper(I) coordination sphere. The resulting heteroleptic complexes C1 and C2 exhibit a broad MLCT transition spreading over a wide wavelength domain, especially when adsorbed onto nanoparticulate TiO2 photoanodes, providing a rather comprehensive visible light collection. The corresponding DSC were evaluated under AM 1.5 simulated solar light and rather weak performances were obtained owing to small J(sc) and V(oc). This is due to a combination of low extinction coefficient and poor driving forces for the various interfacial processes. However, significant improvements in the performances were monitored upon ageing in the dark, likely due to beneficial reorganization of the dye monolayers. The possibility to isolate stable asymmetric systems paves the way for structurally assisted photo-induced charge injection from the chemisorbed copper(i) based sensitizers into the conduction band of TiO2, through charge vectorialization.

10.
Inorg Chem ; 50(22): 11309-22, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-22017327

ABSTRACT

Two new sterically challenged diimine ligands L(1) (2,9-dimesityl-2-(4'-bromophenyl)imidazo[4,5-f][1,10]phenanthroline) and L(2) (3,6-di-n-butyl-11-bromodipyrido[3,2-a:2',3'-c]phenazine) have been synthesized with the aim to build original heteroleptic copper(I) complexes, following the HETPHEN concept developed by Schmittel and co-workers. The structure of L(1) is based on a phen-imidazole molecular core, derivatized by two highly bulky mesityl groups in positions 2 and 9 of the phenanthroline cavity, preventing the formation of a homoleptic species, while L(2) is a dppz derivative, bearing n-butyl chains in α positions of the chelating nitrogen atoms. The unambiguous formation of six novel heteroleptic copper(I) complexes based on L(1), L(2), and complementary matching ligands (2,9-R(2)-1,10-phenanthroline, with R = H, methyl, n-butyl or mesityl) has been evidenced, and the resulting compounds were fully characterized. The electronic absorption spectra of all complexes fits well with DFT calculations allowing the assignment of the main transitions. The characteristics of the emissive excited state were investigated in different solvents using time-resolved single photon counting and transient absorption spectroscopy. The complexes with ligand L(2), bearing a characteristic dppz moiety, exhibit a very low energy excited-state which mainly leads to fast nonradiative relaxation, whereas the emission lifetime is higher for those containing the bulky ligand L(1). For example, a luminescence quantum yield of about 3 × 10(-4) is obtained with a decay time of about 50 ns for C2 ([Cu(I)(nBu-phen)(L(1))](+)) with a weak influence of strong coordinating solvent on the luminescence properties. Overall, the spectral features are those expected for a highly constrained coordination cage. Yet, the complexes are stable in solution, partly due to the beneficial π stacking between mesityl groups and vicinal phenanthroline aromatic rings, as evidenced by the X-ray structure of complex C3 ([Cu(I)(Mes-phen)(L(2))](+)). Electrochemistry of the copper(I) complexes revealed reversible anodic behavior, corresponding to a copper(I) to copper(II) transition. The half wave potentials increase with the steric bulk at the level of the copper(I) ion, reaching a value as high as 1 V vs SCE, with the assistance of ligand induced electronic effects. L(1) and L(2) are further end-capped by a bromo functionality. A Suzuki cross-coupling reaction was directly performed on the complexes, in spite of the handicapping lability of copper(I)-phenanthroline complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...