Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39276286

ABSTRACT

The release of synthetic dyes into water bodies poses many environmental issues, and their removal is a necessity. Advanced oxidation processes (AOPs) can be employed for removal, in many of which a catalyst is used. graphene oxide (GO) is a viable catalyst due to its distinctive structural properties; however, it is reportedly incapable of effectively activating persulfate. Thus, this study delves for the first time into the influence of doping silica on enhancing GO's catalytic performance to activate persulfate for decolorizing Acid Blue 25 (AB25). Based on the results, an equal weight proportion of GO to silica was selected as the most efficient ratio. In addition, pH had no significant effect on removal efficiency, while temperature had the highest impact. Within 150 min with 0.075 gr/L of GO-SiO2 as the catalyst and 1 gr/L of Na2S2O8 as the oxidant, the investigated process removed Acid Blue 25 up to 82%, which was 9% higher than when GO alone was used as the catalyst. As for COD removal, the contribution of doping silica was more significant and led to 37% COD removal, which was 17% higher than when GO alone was used.

2.
Chemosphere ; 340: 139750, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37574083

ABSTRACT

Composition and source of dissolved organic matter (DOM) in water influence the rate of production of reactive intermediates (RIs), affecting the photodegradation of phenolic contaminants of emerging concern (PhCECs). However, this relationship has not been fully quantified. Here, for the first time, we propose a mechanism for photodegradation of a surrogate of PhCECs, p-cresol, in different DOM standard solutions under simulated sunlight irradiation. More importantly, the correlation of DOM optical parameters and p-cresol photodegradation kinetic parameters was determined by Pearson correlation. Results showed that indirect photodegradation was the only degradation pathway for p-cresol, mainly through reaction with excited triplet state of dissolved organic matter (3DOM*). Singlet oxygen (1O2) and hydroxyl radical (•OH) hindered degradation of p-cresol by decreasing the steady state concentration of 3DOM*. Moreover, less aromatic and smaller molecular size DOM showed higher steady-state concentration and quantum yield of 1O2, and 3DOM*, resulting in faster p-cresol photodegradation. Finally, 7 out of 8 optical parameters showed strong correlation with the p-cresol photodegradation rate constant. The mechanism and correlations found are a potential tool to predict PhCECs photodegradation in water using DOM optical parameters.


Subject(s)
Dissolved Organic Matter , Water Pollutants, Chemical , Water Pollutants, Chemical/radiation effects , Water , Phenols , Photolysis
3.
J Environ Manage ; 319: 115733, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35868189

ABSTRACT

In the electrocoagulation process, passivation or corrosion of the electrodes is one of the biggest challenges that cause a drop in treatment effectiveness. In this study, the effect of polarity switching was investigated, for the first time, in an attempt to enhance electrocoagulation treatment's ability to remove chemical oxygen demand (COD) and color from pretreated landfill leachate. Moreover, the ratio of the anode to cathode surface area and rotating electrode were examined in light of experimental results. The effect of different parameters, including the stirring speed, initial leachate pH, electrical current density, anode to cathode surface area ratio, and polarity switching time on system efficiency, was evaluated using the one-factor-at-a-time (OFAT) classical method. According to the results, polarity switching resulted in an almost 18% increase in COD removal, 14% increase in color removal, 13% decrease in electrical energy consumption (EEC), 51% decrease in the specific sludge production (TSS/COD), and improved electrode performance compared to non-polarity switching mode. The findings of this research showed the highest COD and color removal efficiencies, which were 34% and 67%, respectively, in a 120 min period, a stirring speed of 135 rpm, the initial leachate pH of 9, the current density of 14.4 mA/cm2, the anode/cathode surface ratio of 0.35, and the polarity switching time of 300 s.


Subject(s)
Electrocoagulation , Water Pollutants, Chemical , Biological Oxygen Demand Analysis , Electrocoagulation/methods , Electrodes , Sewage , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL